British journal of anaesthesia
-
Accumulated evidence suggests that spinal cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) may be implicated in the development of opioid-induced hyperalgesia. ⋯ Acute repeated fentanyl administration dose-dependently produced mechanical hyperalgesia and augmented surgery induced postoperative hyperalgesia. This behavioural change was paralleled with an increase in spinal COX-2 mRNA and PGE2 after fentanyl administration. Inhibition of COX-2 or blockade of EP-1R can partly or totally prevent hyperalgesia.
-
Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. ⋯ Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.
-
Caloric restriction (CR) increases both average and maximum lifespan, retards physiological signs of ageing, and delays the onset of several diseases and may mediate neuropathic pain. Neuropathic pain seriously affects the quality of life of patients. In this study, we investigated whether CR exerts anti-nociceptive effects on neuropathic pain, and probed its potential mechanisms. ⋯ These results suggest that the effects of CR on pain behaviours in a rat model of nerve injury are via inhibition of excessive neuro-inflammation induced by the injury. CR may be of benefit in patients with neuropathic pain.