British journal of anaesthesia
-
Letter Multicenter Study
Response of US hospitals to elective surgical cases in the COVID-19 pandemic.
-
Anaesthetic induction occurs at higher plasma drug concentrations than emergence in animal studies. Some studies find evidence for such anaesthetic hysteresis in humans, whereas others do not. Traditional thinking attributes hysteresis to drug equilibration between plasma and the effect site. Indeed, a key difference between human studies showing anaesthetic hysteresis and those that do not is in how effect-site equilibration was modelled. However, the effect-site is a theoretical compartment in which drug concentration cannot be measured experimentally. Thus, it is not clear whether drug equilibration models with experimentally intractable compartments are sufficiently constrained to unequivocally establish evidence for the presence or absence of anaesthetic hysteresis. ⋯ Effect-site equilibration models can readily collapse hysteresis. However, this does not imply that hysteresis is solely attributable to the kinetics of drug equilibration.
-
Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. ⋯ iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.