British journal of anaesthesia
-
Robotic-assisted surgery has improved the precision and accuracy of surgical movements with subsequent improved outcomes. However, it requires steep Trendelenburg positioning combined with pneumoperitoneum that negatively affects respiratory mechanics and increases the risk of postoperative respiratory complications. This narrative review summarises the state of the art in ventilatory management of these patients in terms of levels of positive end-expiratory pressure (PEEP), tidal volume, recruitment manoeuvres, and ventilation modes during both urological and gynaecological robotic-assisted surgery. ⋯ Recruitment manoeuvres improved intraoperative arterial oxygenation, end-expiratory lung volume and the distribution of ventilation to dependent (dorsal) lung regions. Pressure-controlled compared with volume-controlled ventilation showed lower peak airway pressures with both higher compliance and higher carbon dioxide clearance. We propose directions to optimise ventilatory management during robotic surgery in light of the current evidence.