British journal of anaesthesia
-
Randomized Controlled Trial
Dexmedetomidine administration during brain tumour resection and postoperative delirium: a randomised controlled trial.
Delirium is common, especially after neurosurgery. Dexmedetomidine might reduce delirium by improving postoperative analgesia and sleep quality. We tested the primary hypothesis that dexmedetomidine administration during intracerebral tumour resection reduces the incidence of postoperative delirium. ⋯ NCT04674241.
-
Observational Study
Quantitative analysis of early-stage EEG reactivity predicts awakening and recovery of consciousness in patients with severe brain injury.
Decisions of withdrawal of life-sustaining therapy for patients with severe brain injury are often based on prognostic evaluations such as analysis of electroencephalography (EEG) reactivity (EEG-R). However, EEG-R usually relies on visual assessment, which requires neurophysiological expertise and is prone to inter-rater variability. We hypothesised that quantitative analysis of EEG-R obtained 3 days after patient admission can identify new markers of subsequent awakening and consciousness recovery. ⋯ An early-stage quantitative EEG-R marker was independently associated with awakening and 3-month level of consciousness in patients with severe brain injury. This promising marker based on functional connectivity will need external validation before potential integration into a multimodal prognostic model.
-
The dysfunction of the blood-brain barrier could contribute to the pathogenesis of the perioperative neurocognitive disorder. In a recent study published in the British Journal of Anaesthesia, Yang and colleagues developed an innovative microfluidics-assisted blood-brain barrier device to investigate the effects of neuroimmune interactions on blood-brain barrier opening. The findings are important and timely to understanding the mechanistic insights of perioperative neurocognitive disorder.
-
Editorial Comment
Linking and unlinking the paediatric brain: age-invariant neural correlates of general anaesthesia.
There is no single electroencephalographic metric for general anaesthesia that is validated for both children and adults. This is, in part, because of the changing electroencephalographic features associated with development. Here, we discuss how alterations in correlated brain activity during general anaesthesia advance our understanding of anaesthetic monitoring and the neurobiology of consciousness.
-
The safety of anaesthesia has improved as a result of better control of anaesthetic depth. However, conventional monitoring does not inform on the nature of nociceptive processes during unconsciousness. A means of inferring the quality of potentially painful experiences could derive from analysis of brain activity using neuroimaging. We have evaluated the dose effects of remifentanil on brain response to noxious stimuli during deep sedation and spontaneous breathing. ⋯ The response to moderately intense focal pressure in pain-related brain networks is effectively eliminated with safe remifentanil doses. However, the safety margin in deep sedation-analgesia would be narrowed in minimising not only nociceptive responses, but also arousal-related biological stress.