British journal of anaesthesia
-
Postoperative mortality occurs in 1-2% of patients undergoing major inpatient surgery. The currently available prediction tools using summaries of intraoperative data are limited by their inability to reflect shifting risk associated with intraoperative physiological perturbations. We sought to compare similar benchmarks to a deep-learning algorithm predicting postoperative 30-day mortality. ⋯ A deep-learning time-series model improves prediction compared with models with simple summaries of intraoperative data. We have created a model that can be used in real time to detect dynamic changes in a patient's risk for postoperative mortality.
-
Editorial Comment
Use of the GRADE approach in systematic reviews and guidelines.
-
Traumatic brain injury (TBI) is associated with reduced cerebral blood flow and impaired autoregulation after TBI, which may lead to poor outcome. Clinical evidence has implicated neurological injuries and associated neuroinflammation as causes of cardiac dysfunction. Studies on newborn pigs show an association of elevated catecholamines with a sex-dependent impairment of cerebral autoregulation after TBI. One strategy to decrease sympathetic hyperactivity is pharmacological intervention with beta blockade. We tested the hypothesis that propranolol would prevent the impairment of cerebral autoregulation and tissue changes after TBI via inhibition of interleukin-6 (IL-6) upregulation. ⋯ These data indicate that sympathetic hyperactivity noted after TBI can be limited by propranolol administration to result in improved brain outcome post-injury via block of IL-6 upregulation, and this effect is irrespective of sex.