Journal of medicinal chemistry
-
Abnormal proliferation mediated by disruption of the normal cell cycle mechanisms is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDK) and cyclins, such as CDK2/cyclin A and CDK2/cyclin E, and inhibiting their kinase activity are regarded as promising antitumor agents to complement the existing therapies. ⋯ The hit-to-lead expansion of this class is described. X-ray crystallographic data of early compounds in this series, as well as in vitro testing funneled for rapidly achieving in vivo efficacy, led to a nanomolar inhibitor of CDK2/cyclin A (N-(5-cyclopropyl-1H-pyrazol-3-yl)-2-(2-naphthyl)acetamide (41), PNU-292137, IC50 = 37 nM) with in vivo antitumor activity (TGI > 50%) in a mouse xenograft model at a dose devoid of toxic effects.
-
The synthesis, biological, and pharmacological evaluation of novel derivatives of cyprodime are described. Their binding affinities at mu, delta, and kappa opioid receptors were evaluated using receptor binding assay. It was observed that the affinity of these compounds was sensitive to the character and length of the substituent in position 4. ⋯ The novel derivatives of cyprodime containing a 14-phenylpropoxy group acted as potent antinociceptives. When tested in vivo, compounds 7, 8, and 17 were considerably more potent than morphine, with phenol 7 showing the highest antinociceptive potency (21-fold in the hot plate test, 38-fold in the tail flick test, and 300-fold in the paraphenylquinone writhing test) in mice. Introduction of a 14-phenylpropoxy substituent leads to a profound alteration in the pharmacological profile of this class of compounds.
-
Nine new nitrogen mustard compounds derived from 2,6-difluoro-4-hydroxy- (3a-e) and 2,6-difluoro-4-amino- (4a-d) aniline were synthesized as potential prodrugs. They were designed to be activated to their corresponding 3,5-difluorophenol and -aniline (4)-nitrogen mustards by the enzyme carboxypeptidase G2 (CPG2) in gene-directed enzyme prodrug therapy (GDEPT) models. ⋯ The cytotoxicity differentials were calculated between CPG 2-expressing and -nonexpressing cells and yielded different results for the two series of prodrugs despite their structural similarities. While the phenol compounds are ineffective as prodrugs, their aniline counterparts exhibit outstanding activity in the tumor cell lines expressing CPG2. [3,5-Difluoro-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl-l-glutamic acid gave a differential of >227 in MDA MB361 cells as compared with 19 exhibited by 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-l-glutamic acid, 1a, which has been in clinical trials.
-
N-Acyl-2-aminothiazoles with nonaromatic acyl side chains containing a basic amine were found to be potent, selective inhibitors of CDK2/cycE which exhibit antitumor activity in mice. In particular, compound 21 [N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide, BMS-387032], has been identified as an ATP-competitive and CDK2-selective inhibitor which has been selected to enter Phase 1 human clinical trials as an antitumor agent. In a cell-free enzyme assay, 21 showed a CDK2/cycE IC(50) = 48 nM and was 10- and 20-fold selective over CDK1/cycB and CDK4/cycD, respectively. ⋯ Dosed orally to mouse, rat, and dog, 21 showed 100%, 31%, and 28% bioavailability, respectively. As an antitumor agent in mice, 21 administered at its maximum-tolerated dose exhibited a clearly superior efficacy profile when compared to flavopiridol in both an ip/ip P388 murine tumor model and in a s.c./i.p. A2780 human ovarian carcinoma xenograft model.
-
A series of pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone (7a-k) were synthesized and evaluated for binding affinity at the opioid delta, micro, and kappa receptors in brain membranes using radioligand binding assays and for functional activity in vitro using [(35)S]GTP-gamma-S binding assays in brain tissues and bioassays using guinea pig ileum (GPI) and mouse vas deferens (MVD) smooth muscle preparations. The pyridine ring unsubstituted pyridomorphinans possessing the oxymorphone and hydromorphone framework displayed nearly equal binding affinity at the micro and delta receptors. Their affinities at the kappa site were nearly 10-fold less than their binding affinities at the micro and delta sites. ⋯ Among the ligands studied, the hydromorphone-derived 4-chlorophenylpyridomorphinan 7h was identified as a ligand possessing a promising profile of mixed micro agonist/delta antagonist activity in vitro and in vivo. In a repeated administration paradigm in which the standard micro agonist morphine produces significant tolerance, repeated administration of the micro agonist/delta antagonist ligand 7h produced no tolerance. These results indicate that appropriate molecular manipulations of the morphinan templates could provide ligands with mixed micro agonist/delta antagonist profiles and such ligands may have the potential of emerging as novel analgesic drugs devoid of tolerance, dependence, and related side effects.