Journal of medicinal chemistry
-
A series of N-alkyl- and N,N-dialkyl-4-[alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl] benzyl]-benzamides were synthesized and evaluated for binding affinities at mu, delta, and kappa opioid receptor subtypes. Several compounds (2e,f,h,i,m) strongly bound to the delta receptor with IC50 values in the nanomolar range. On the other hand, the binding affinities of these compounds for the mu and kappa receptors were in the micromolar or greater range indicating excellent delta opioid receptor subtype selectivities. ⋯ The results obtained generally paralleled those from the rat brain binding assay. Compounds 2e,f with potent delta binding affinities and high delta selectivities were shown to be delta agonists with high selectivity by studies in the guinea pig ileum (GPI) and mouse vas deferens (MVD) preparations. Compound 2f was the most selective compound in the rat brain and GPI/MVD assays with 1755- and 958-fold delta vs mu selectivity, respectively.
-
The syntheses of two cephalosporin derivatives 2 and 3 of mitomycin C (1) containing 7-phenylacetamido and 7-delta-carboxybutanamido side chains, respectively, are described. These compounds were prepared for evaluation as cephalosporin prodrugs capable of being activated by mAb-beta-lactamase conjugates. In vitro cytotoxicity assays performed on H2987 lung adenocarcinoma and clone 62 melanoma cell lines indicated that compound 2 was comparable in cytotoxicity to the parent drug. ⋯ The kcat/Km ratios for 2 and 3 were found to be approximately 9.7 and 2.1 microM/s, respectively. Comparison of these kcat/Km values with those obtained for similar cephalosporin derivatives of other antitumor agents demonstrated that compounds with delta-carboxybutanamido side chains generally have slightly diminished efficiency of enzymatic hydrolysis compared to the corresponding 7-phenylacetamido analog. It was also demonstrated that the less toxic prodrug 3 was activated in an immunologically specific manner by L6-F(ab')-beta-lactamase and 96.5-F(ab')-beta-lactamase conjugates, selective for H2987 and clone 62 cells, respectively.
-
The highly selective delta (delta) opioid receptor agonist SNC 80 [(+)-4- [(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N ,N- diethylbenzamide, (+)-21] and novel optically pure derivatives were synthesized from the enantiomers of 1-allyl-trans-2,5-dimethylpiperazine (2). The piperazine (+/-)-2 was synthesized, and its enantiomers were obtained on a multigram scale in > 99% optical purity by optical resolution of the racemate with the camphoric acids. The absolute configuration of (+)-2 was determined to be 2S,5R by X-ray analysis of the salt with (+)-camphoric acid. ⋯ The latter derivatives are the most selective ligands described in the new series. Studies with some of the compounds described in the isolated mouse vas deferens and guinea pig ileum bioassays revealed that all were agonists with different degrees of selectivity for the delta opioid receptor. These data show that (+)-21 and (+)-22 are potent delta receptor agonists and suggest that these compounds will be valuable tools for further study of the delta opioid receptor at the molecular level, including its function and role in analgesia and drug abuse.
-
A series of 3- and 5-alkylamino derivatives, as well as other structurally modified analogues of pyridine-2-carboxaldehyde thiosemicarbazone, have been synthesized and evaluated as inhibitors of CDP reductase activity and for their cytotoxicity in vitro and antineoplastic activity in vivo against the L1210 leukemia. Alkylation of 3- and 5-amino-2-(1,3-dioxolan-2-yl)pyridines (1, 2) resulted in corresponding 3-methylamino, 5-methylamino, 3-allylamino, 5-ethylamino, 5-allylamino, 5-propylamino, and 5-butylamino derivatives (5, 6, and 11-15), which were then condensed with thiosemicarbazide to yield the respective thiosemicarbazones (7, 8, and 16-20). Oxidation of 3,5-dinitro-2-methylpyridine (21) with selenium dioxide, followed by treatment with ethylene glycol and p-toluenesulfonic acid, produced the cyclic ethylene acetal, 23. ⋯ Repetition of the N-oxidation and rearrangement procedures with compound 37 yielded the diacetate derivative 39. Condensation of compounds 24, 31, and 39 with thiosemicarbazide afforded the respective 3,5-diaminopyridine-, 4-(4-morpholinylmethyl)-5-aminopyridine-, and 5-(aminomethyl)pyridine-2-carboxaldehyde thiosemicarbazones (25, 32, and 40). The most biologically active compounds synthesized were the 5-(methylamino)-, 5-(ethylamino)-, and 5-(allylamino)pyridine-2-carboxaldehyde thiosemicarbazones (8, 17, and 18), which were potent inhibitors of ribonucleotide reductase activity with corresponding IC50 values of 1.3, 1.0, and 1.4 microM and which produced significant prolongation of the survival time of L1210 leukemia-bearing mice, with corresponding optimum % T/C values of 223, 204, and 215 being obtained when administered twice daily for six consecutive days at dosages of 60, 80, and 80 mg/kg, respectively.
-
Comparative Study
New mustard prodrugs for antibody-directed enzyme prodrug therapy: alternatives to the amide link.
Antibody-directed enzyme prodrug therapy (ADEPT) is a two-step approach for the treatment of cancer which seeks to generate a potent cytotoxic agent selectively at a tumor site. In this work described the cytotoxic agent is generated by the action of an enzyme CPG2 on a relatively nontoxic prodrug. The prodrug 1 currently on clinical trial is a benzamide and is cleaved by CPG2 to a benzoic acid mustard drug 1a. ⋯ Some of these alternative links have been shown to be good substrates for CPG2 and therefore new candidates for ADEPT. The active drugs 3a and 4a derived from the best of these prodrugs are potent cytotoxic agents (1-2 microM) some 100 times more than 1a. The prodrugs 3 and 4 are some 100-200-fold less cytotoxic, in a proliferating cell assay, than their corresponding active drugs 3a and 4a.