European journal of pain : EJP
-
While the etiology of fibromyalgia syndrome (FMS) remains unclear, it is assumed that both peripheral and central components are involved. ⋯ Repetitive proton/PGE(2)-induced excitation of muscle tissue led to a more prolonged perception of pain and more wide-spread activation in pain-related brain areas in FMS, especially in the left (ipsilateral) insula, whereas acute protons/PGE(2)-induced pain processing was similar in the two groups. These data provide further evidence for enhanced central pain processing in FMS patients.
-
Phantom phenomena are frequent following amputation, but how this often painful experience is modified or triggered by spontaneous events or sensations often puzzles amputees and clinicians alike. We explored triggers of phantom phenomena in a heterogeneous sample of 264 upper and lower limb adult amputees with phantom sensations. Participants completed a structured questionnaire to determine the prevalence and nature of the triggers of phantom phenomena. ⋯ Finally, habitual "forgetting" behaviors were most common soon after amputation, whereas other more adaptive schemata (e.g., self-defense) were equally likely to be performed at any time following amputation. Various likely inter-related mechanisms are discussed in relation to phantom triggers. Ultimately, optimizing stump and neuroma management, as well as restoring function of central networks for pain, limb movement, and amputation-related memories, should help manage spontaneously triggered phantom phenomena.
-
We have studied scalding-type burn injury-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the spinal dorsal horn, which is a recognised marker for spinal nociceptive processing. At 5min after severe scalding injury to mouse hind-paw, a substantial number of phosphorylated ERK1/2 (pERK1/2) immunopositive neurons were found in the ipsilateral dorsal horn. At 1h post-injury, the number of pERK1/2-labelled neurons remained substantially the same. ⋯ By 6h post-injury, the number of labelled neurons was reduced on both sides without there being significant difference between the two sides. A similar pattern of severe scalding injury-induced activation of ERK1/2 in spinal dorsal horn neurons over the same time-course was found in mice which lacked the transient receptor potential type 1 receptor (TRPV1) except that the extent to which ERK1/2 was activated in the ipsilateral dorsal horn at 5 min post-injury was significantly greater in wild-type animals when compared to TRPV1 null animals. This difference in activation of ERK1/2 in spinal dorsal horn neurons was abolished within 1h after injury, demonstrating that TRPV1 is not essential for the maintenance of ongoing spinal nociceptive processing in inflammatory pain conditions in mouse resulting from at least certain types of severe burn injury.
-
Trigeminal neuropathic pain is due to lesion or dysfunction of the nervous system. Dynamic mechanical allodynia is a widespread symptom of neuropathic pain for which mechanisms are still poorly understood. Recent studies demonstrate that forebrain neurons, including neurons in the medial prefrontal cortex (mPFC) are important for the perception of acute and chronic pain. ⋯ Stimulus-evoked pERK-1/2 immunopositive cell bodies displayed a rostrocaudal gradient and layer-selective distribution in the ventral mPFC, being predominant in the rostral ventral mPFC and in layers II-III and V-VI of the ventral mPFC. In layers II-III, intense pERK-1/2 also extended into distal dendrites, up to layer I. These results demonstrate that trigeminal nerve injury induces a significant alteration in the ventral mPFC processing of tactile stimuli and suggest that ERK phosphorylation contributes to the mechanisms underlying abnormal pain perception under this condition.
-
Despite using prescribed pain medications, patients with neuropathic pain continue to experience moderate to severe pain. There is a growing recognition of a potent peripheral opioid analgesia in models of inflammatory and neuropathic pain. The goal of this study was to characterize the temporal and spatial expression of mu opioid receptor (mOR) mRNA and protein in primary afferent neurons in a rat L5 spinal nerve ligation model of persistent neuropathic pain. ⋯ Western blot analysis revealed a persistent increase in mOR protein expression, although immunohistochemistry showed no change in number of mOR-positive neurons in the uninjured L4 DRG. Interestingly, mOR protein expression was reduced in the skin on days 14 and 35 post-nerve injury and in the L4 and L5 spinal cord on day 35 post-nerve injury. These temporal and anatomically specific changes in mOR expression following nerve injury are likely to have functional consequences on pain-associated behaviors and opioid analgesia.