Critical care : the official journal of the Critical Care Forum
-
The benefit of albumin administration in the critically ill patient is unproven. Epidemiological evidence suggests that there is an increase in death among patients with burns, hypoalbuminaemia, and hypotension treated with human albumin solution (HAS). ⋯ When treating patients with hypoalbuminaemia, efforts must be centred around correction of the underlying disorder rather than reversal of hypoalbuminaemia. Problems with using albumin arise because it is an expensive blood product, and can result in systemic changes that include cardiovascular, haematological, renal, pulmonary, and immunological effects.
-
Review
Fluid balance and colloid osmotic pressure in acute respiratory failure: emerging clinical evidence.
Available evidence suggests that both hydrostatic and osmotic forces are important in the development of acute respiratory distress syndrome (ARDS) or, more broadly, acute lung injury (ALI). More than 80% of ARDS patients in a large-scale randomized controlled trial (RCT) exhibited, at least intermittently, pulmonary artery wedge pressures (PAWP) above 18 mmHg. Retrospective analyses have shown that PAWP elevation is associated with increased mortality. ⋯ These results provide evidence that combined therapy with furosemide and albumin is effective in augmenting serum albumin and STP levels, promoting weight loss, and improving oxygenation and longer-term hemodynamic stability. Although mortality did not differ between groups, the RCT showed a trend toward reduced duration of mechanical ventilation and length of stay in the intensive care unit in patients receiving furosemide + albumin. The findings of the RCT further highlight the importance of both hydrostatic and osmotic forces in hypoxemic respiratory failure, a subject that requires further investigation.
-
Practice guidelines on weaning should be based on the results of several well-designed randomized studies performed over the last decade. One of those studies demonstrated that immediate extubation after successful trials of spontaneous breathing expedites weaning and reduces the duration of mechanical ventilation as compared with a more gradual discontinuation of ventilatory support. ⋯ In patients with unsuccessful weaning trials, a gradual withdrawal for mechanical ventilation can be attempted while factors responsible for the ventilatory dependence are corrected. Two randomized studies found that, in difficult-to-wean patients, synchronized intermittent mandatory ventilation (SIMV) is the most ineffective [corrected] method of weaning.
-
Fluid management strategies need to be guided by an understanding of the pathophysiologic mechanisms underlying fluid imbalance. In the hypovolaemic patient, reduced circulating blood volume and venous return and, in severe cases, altered tissue perfusion may initiate a cascade of pathophysiologic processes culminating in multiple organ failure. The objectives of fluid management are to maintain adequate blood pressure, tissue oxygenation and intravascular fluid volume. ⋯ Further evidence is needed to broaden understanding of the optimal roles for particular fluid management strategies. Experimental models can make an important contribution in gathering such evidence. Rigorous pharmacoeconomic studies are also needed to define the benefits and costs of differing fluid regimens.
-
Recent meta-analyses have created uncertainties regarding the appropriate clinical role of colloid resuscitation fluids in critically ill patients and prompted changes in fluid management practice. Such changes may not be justified in view of methodological limitations inherent in the meta-analyses. Further research is nevertheless needed to resolve the questions raised concerning the relationship between choice of resuscitation fluid and patient outcome. ⋯ The results of the randomized animal studies, along with other preclinical data, could also be evaluated using accepted principles of 'critical appraisal' commonly applied to clinical trial results. This critical appraisal might, where appropriate, include meta-analysis of animal study findings. This alternative preclinical pathway to new product evaluation should be completed before the commencement of large-scale clinical trials.