Critical care : the official journal of the Critical Care Forum
-
It has recently been shown that strategies aimed at preventing ventilator-induced lung injury, such as ventilating with low tidal volumes, can reduce mortality in patients with acute respiratory distress syndrome (ARDS). High-frequency oscillatory ventilation (HFOV) seems ideally suited as a lung-protective strategy for these patients. HFOV provides both active inspiration and expiration at frequencies generally between 3 and 10 Hz in adults. ⋯ Although many investigators have studied the merits of HFOV in neonates and in pediatric populations, evidence for its use in adults with ARDS is limited. A recent multicenter, randomized, controlled trial has shown that HFOV, when used early in ARDS, is at least equivalent to conventional ventilation and may have beneficial effects on mortality. The present article reviews the principles and practical aspects of HFOV, and the current evidence for its application in adults with ARDS.
-
Comparative Study Clinical Trial Controlled Clinical Trial
Diagnostic ability of hand-held echocardiography in ventilated critically ill patients.
To compare the diagnostic capability of recently available hand-held echocardiography (HHE) and of conventional transthoracic echocardiography (TTE) used as a gold standard in critically ill patients under mechanical ventilation. ⋯ HHE appears to have a narrower diagnostic field when compared with conventional TTE, but promises to accurately identify diagnoses based on two-dimensional imaging in ventilated critically ill patients.
-
Comparative Study
Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief?
An endotracheal tube (ETT) imposes work of breathing on mechanically ventilated patients. Using a bellows-in-a-box model lung, we compared the tube compensation (TC) performances of the Nellcor Puritan-Bennett 840 ventilator and of the Dräger Evita 4 ventilator. ⋯ Although both ventilators provided effective TC, even when set to 100% TC they could not entirely compensate for a ventilator and ETT-imposed work of breathing. The effect of TC is less than that of pressure support ventilation. Physicians should be aware of this when using TC in weaning trials.
-
Comparative Study
Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study.
We conducted the present study to assess the validity of mortality prediction systems in patients admitted to the intensive care unit (ICU) with severe sepsis and septic shock. We included Acute Physiology and Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, Mortality Probability Model (MPM) II0 and MPM II24 in our evaluation. In addition, SAPS II and MPM II24 were customized for septic patients in a previous study, and the customized versions were included in this evaluation. ⋯ Although general ICU mortality system models had accurate overall mortality prediction, they had poor calibration. Customization of SAPS II and, to a lesser extent, MPM II24 improved calibration. The customized model may be a useful tool when evaluating outcomes in patients with sepsis.
-
There is very little information on what is considered an adequate energy intake for mechanically ventilated, critically ill patients. The purpose of the present study was to determine this energy requirement by making use of patients' nutritional status. ⋯ AF patients had more improvement in nutritional status than patients in the other feeding groups. To provide at least 120% of the resting energy expenditure seemed adequate to meet the caloric energy needs of hemodynamically stable, mechanically ventilated, critically ill patients.