Critical care : the official journal of the Critical Care Forum
-
The present study was performed in order to document costs of intensive care in a Norwegian university hospital and to perform an average cost-effectiveness study using the expected remaining life-years in survivors after 18 months. ⋯ The absolute costs were found to be higher than recent European ICU studies reporting on the cost of ICU treatment. However, the price of a further life-year in survivors was lower and was comparable with other medical treatment.
-
The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. ⋯ It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review.
-
Comparative Study Clinical Trial
Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit.
The diagnosis of sepsis in critically ill patients is challenging because traditional markers of infection are often misleading. The present study was conducted to determine the procalcitonin level at early diagnosis (and differentiation) in patients with systemic inflammatory response syndrome (SIRS) and sepsis, in comparison with C-reactive protein, IL-2, IL-6, IL-8 and tumour necrosis factor-alpha. ⋯ In the present study PCT was found to be a more accurate diagnostic parameter for differentiating SIRS and sepsis, and therefore daily determinations of PCT may be helpful in the follow up of critically ill patients.
-
A progressive rise of oxidative stress due to altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription in physiology and pathophysiology. Reactive oxygen species and reactive nitrogen species serve as signaling messengers for the evolution and perpetuation of the inflammatory process that is often associated with the condition of oxidative stress, which involves genetic regulation. ⋯ Particularly, the review discusses mechanical ventilation and NF-kappaB-mediated lung injury, ischemia-reperfusion and transplantation, compromised host defense and inflammatory stimuli, and hypoxemia and the crucial role of hypoxia-inducible factor in mediating lung injury. Changes in the pattern of gene expression through regulatory transcription factors are therefore crucial components of the machinery that determines cellular responses to oxidative/redox stress.
-
A pure reductionist approach can sometimes be used to solve an exceptionally complicated biologic problem, and sepsis is nothing if not complicated. A serious infection promptly leads to changes in many aspects of host physiology, including alterations in circulation, metabolism, renal, hepatic, and neuroendocrine function; all of these changes happen at once, and each influences one another. ⋯ The key to understanding sepsis, insofar as we do understand it at present, was found in the use of genetic tools to study the very earliest events that take place at the interface of the pathogen and the host. The continued application of both forward and reverse genetic methods, in both mammals and insects, is steadily revealing the central biochemical events that occur during infection.