Critical care : the official journal of the Critical Care Forum
-
Comparative Study
Long term effect of a medical emergency team on cardiac arrests in a teaching hospital.
It is unknown whether the reported short-term reduction in cardiac arrests associated with the introduction of the medical emergency team (MET) system can be sustained. ⋯ Introduction of a MET system into a teaching hospital was associated with a sustained and progressive reduction in cardiac arrests over a four year period. Our findings show sustainability and suggest that, for every 17 MET calls, one cardiac arrest might be prevented.
-
Respiratory failure from severe asthma is a potentially reversible, life-threatening condition. Poor outcome in this setting is frequently a result of the development of gas-trapping. ⋯ In this review we discuss the development of this complication during mechanical ventilation, techniques to measure it and strategies to limit its severity. We hope that by understanding such concepts clinicians will be able to reduce further the poor outcomes occasionally related to severe asthma.
-
Blood transfusion has been used to treat the injured since the US Civil War. Now, it saves the lives of tens of thousands of injured patients each year. However, not everyone who receives blood benefits, and some recipients are injured by the transfusion itself. ⋯ Issues of current clinical concern in highly developed trauma systems include how to manage massive transfusion events, how to limit blood use and so minimize exposure to transfusion risks, how to integrate new hemorrhage control modalities, and how to deal with blood shortages. Less developed trauma systems are primarily concerned with speeding transport to specialized facilities and assembling trauma center resources. This article reviews the factors that effect blood use in urgent trauma care.
-
Microcirculatory dysfunction plays a pivotal role in the development of the clinical manifestations of severe sepsis. Prior to the advent of new imaging technologies, clinicians had been limited in their ability to assess the microcirculation at the bedside. Clinical evidence of microcirculatory perfusion has historically been limited to physical examination findings or surrogates that could be derived from global parameters of oxygen transport. ⋯ Although the study of the microcirculation has long been the domain of basic science, newly developed imaging technologies, such as orthogonal polarization spectral imaging, have now given us the ability to directly visualize and analyze microcirculatory blood flow at the bedside, and see the microcirculatory response to therapeutic interventions. Disordered microcirculatory flow can now be associated with systemic inflammation, acute organ dysfunction, and increased mortality. Using new technologies to directly image microcirculatory blood flow will help define the role of microcirculatory dysfunction in oxygen transport and circulatory support in severe sepsis.
-
Sepsis causes microvascular dysfunction. Increased heterogeneity of capillary blood flow results in local tissue hypoxia, which can cause local tissue inflammation, impaired oxygen extraction, and, ultimately, organ dysfunction. Microvascular dysfunction is clinically relevant because it is a marker for mortality: it improves rapidly in survivors of sepsis but fails to improve in nonsurvivors. ⋯ Successful modulation of inflammation has a positive impact on endothelial function. Finally, targeted treatment of the endothelium, using activated protein C, also improves microvascular function and ultimately increases survival. Thus, attention must be paid to the microcirculation in patients with sepsis, and therapeutic strategies should be employed to resuscitate the microcirculation in order to avoid organ dysfunction and to reduce mortality.