Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial.
Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (deltaPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital. ⋯ Monitoring and minimizing deltaPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital.
-
Comparative Study
Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode.
There are several ventilator modes that are used for maintenance mechanical ventilation but no conclusive evidence that one mode of ventilation is better than another. Vibration response imaging is a novel bedside imaging technique that displays vibration energy of lung sounds generated during the respiratory cycle as a real-time structural and functional image of the respiration process. In this study, we objectively evaluated the differences in regional lung vibration during different modes of mechanical ventilation by means of this new technology. ⋯ Pressure support and (to a lesser extent) pressure control modes cause a shift of vibration toward lower lung regions compared to volume control when tidal volumes are held constant. Better patient synchronization with the ventilator, greater downward movement of the diaphragm, and decelerating flow waveform are potential physiologic explanations for the redistribution of vibration energy to lower lung regions in pressure-targeted modes of mechanical ventilation.
-
Low cardiac output states such as left heart failure are characterized by preserved oxygen extraction ratio, which is in contrast to severe sepsis. Near infrared spectroscopy (NIRS) allows noninvasive estimation of skeletal muscle tissue oxygenation (StO2). The aim of the study was to determine the relationship between StO2 and mixed venous oxygen saturation (SvO2) in patients with severe left heart failure with or without additional severe sepsis or septic shock. ⋯ Skeletal muscle StO2 does not estimate SvO2 in patients with severe left heart failure and additional severe sepsis or septic shock. However, in patients with severe left heart failure without additional severe sepsis or septic shock, StO2 values could be used to provide rapid, noninvasive estimation of SvO2; furthermore, the trend in StO2 may be considered a surrogate for the trend in SvO2.
-
The objective of the present study was to compare postoperative cardiac troponin I (cTnI) release and the thresholds of cTnI that predict adverse outcome after elective coronary artery bypass graft (CABG), after valve surgery, and after combined cardiac surgery. ⋯ The magnitude of postoperative cTnI release is related to the type of cardiac surgical procedure. Different thresholds of cTnI must be considered according to the procedure type to predict early an adverse postoperative outcome.
-
Prediction of death and prolonged mechanical ventilation is important in terms of projecting resource utilization and in establishing protocols for clinical studies of acute lung injury (ALI). We aimed to identify risk factors for a combined end-point of death and/or prolonged ventilator dependence and developed an ALI-specific prediction model. ⋯ A model based on age and cardiopulmonary function three days after the intubation is able to predict, moderately well, a combined end-point of death and/or prolonged mechanical ventilation in patients with ALI.