Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial.
Severe traumatic brain injury (TBI) has been increasing with greater incidence of injuries from traffic or sporting accidents. Although there are a number of animal models of TBI using progesterone for head injury, the effects of progesterone on neurologic outcome of acute TBI patients remain unclear. The aim of the present clinical study was to assess the longer-term efficacy of progesterone on the improvement in neurologic outcome of patients with acute severe TBI. ⋯ Our data suggest that acute severe TBI patients with administration of progesterone hold improved neurologic outcomes for up to 6 months. These results provide information important for further large and multicenter clinical trials on progesterone as a promising neuroprotective drug.
-
Sepsis still represents an important clinical and economic challenge for intensive care units. Severe complications like multi-organ failure with high mortality and the lack of specific diagnostic tools continue to hamper the development of improved therapies for sepsis. Fundamental questions regarding the cellular pathogenesis of experimental and clinical sepsis remain unresolved. ⋯ Importantly, the survival rate of RAGE knockout mice was more than fourfold that of wild-type mice in a septic shock model of cecal ligation and puncture (CLP). Additionally, the application of soluble RAGE, an extracellular decoy for RAGE ligands, improves survival in mice after CLP, suggesting that RAGE is a central player in perpetuating the innate immune response. Understanding the basic signal transduction events triggered by this multi-ligand receptor may offer new diagnostic and therapeutic options in patients with sepsis.
-
International guidelines concerning the management of patients with sepsis, septic shock and multiple organ failure make no reference to the nature of the infecting organism. Indeed, most clinical signs of sepsis are nonspecific. In contrast, in vitro data suggest that there are mechanistic differences between bacterial, viral and fungal sepsis, and imply that pathogenetic differences may exist between subclasses such as Gram-negative and Gram-positive bacteria. ⋯ Data from some clinical trials conducted in severe sepsis support this hypothesis. It is likely that potential new therapies targeting, for example, Toll-like receptor pathways will require knowledge of the infecting organism. The advent of new technologies that accelerate the identification of infectious agents and their antimicrobial sensitivities may allow better tailored anti-mediator therapies and administration of antibiotics with narrow spectra and known efficacy.
-
Randomized Controlled Trial
Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic.
The rate of weaning of vasopressors drugs is usually an empirical choice made by the treating in critically ill patients. We applied fuzzy logic principles to modify intravenous norepinephrine (noradrenaline) infusion rates during norepinephrine infusion in septic patients in order to reduce the duration of shock. ⋯ Our study has shown a reduction in norepinephrine weaning duration in septic patients enrolled in the fuzzy group. We attribute this reduction to fuzzy control of norepinephrine infusion.
-
Sepsis is the most common trigger of acute kidney injury (AKI) in critically ill patients; understanding the structural changes associated with its occurrence is therefore important. Accordingly, we systematically reviewed the literature to assess current knowledge on the histopathology of septic AKI. ⋯ There are no consistent renal histopathological changes in human or experimental septic AKI. The majority of studies reported normal histology or only mild, nonspecific changes. ATN was relatively uncommon.