Critical care : the official journal of the Critical Care Forum
-
Comparative Study
Expiratory automatic endotracheal tube compensation reduces dynamic hyperinflation in a physical lung model.
The effect of expiratory endotracheal tube (ETT) resistance on dynamic lung inflation is unknown. We hypothesized that ETT resistance causes dynamic lung hyperinflation by impeding lung emptying. We further hypothesized that compensation for expiratory ETT resistance by automatic tube compensation (ATC) attenuates dynamic lung hyperinflation. ⋯ In a lung model of pressure-targeted ventilation, expiratory ETT resistance caused dynamic lung hyperinflation during increases in respiratory rates, thereby reducing inspiratory tidal volume. Expiratory ATC attenuated these adverse effects.
-
Comparative Study
Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients.
Given the pivotal role of T lymphocytes in the immune system, patients with septic shock may show T cell abnormalities. We have characterised the T cell compartment in septic shock and assess its clinical implications. ⋯ A severe redistribution of T lymphocyte subsets is found in septic shock patients. A different kinetic pattern of T cell subset involvement is observed in surviving and nonsurviving patients, with lower numbers of circulating CD3+CD8+CD28+ and CD3+CD8+CD62L+ associated with a better disease outcome.
-
Clinical Trial
Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure.
Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of mechanical ventilation with heliox in these patients is unclear. The objective of this prospective cross-over study was to determine the effects of mechanical ventilation with heliox 60/40 versus conventional gas on respiratory system resistance, air-trapping and CO2 removal. ⋯ Respiratory system resistance is significantly decreased by mechanical ventilation with heliox (ISCRTN98152468).
-
The inflammatory response to an invading pathogen in sepsis leads to complex alterations in hemostasis by dysregulation of procoagulant and anticoagulant factors. Recent treatment options to correct these abnormalities in patients with sepsis and organ dysfunction have yielded conflicting results. Using thromboelastometry (ROTEM(R)), we assessed the course of hemostatic alterations in patients with sepsis and related these alterations to the severity of organ dysfunction. ⋯ Key variables of ROTEM(R) remained within the reference ranges during the phase of critical illness in this cohort of patients with severe sepsis and septic shock without bleeding complications. Improved organ dysfunction upon discharge from the ICU was associated with shortened coagulation time, accelerated clot formation, and increased firmness of the formed blood clot when compared with values on admission. With increased severity of illness, changes of ROTEM(R) variables were more pronounced.
-
Comparative Study
Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury.
Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. ⋯ Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.