Critical care : the official journal of the Critical Care Forum
-
Schochl and co-authors have described a 5-year retrospective study that outlines a novel, important and controversial transfusion concept in seriously injured trauma patients. Traditionally, clinicians have been taught to use a serial approach, resuscitating hypovolemic trauma patients with a form of crystalloid or colloid, followed by red blood cells (RBCs), then fresh frozen plasma (FFP), and lastly platelets. ⋯ Conversely, Schochl and colleagues, in an innovative, retrospective study, describe the use of fibrinogen concentrate, plasma complex concentrate, RBCs, FFP, and platelets driven by a thromboelastometry-based algorithm. Finally, it appears that transfusion therapy is becoming driven by physiology.
-
Arterial pressure optimization in septic shock is a critical, yet poorly understood component of resuscitation. New data suggest that, during the routine management of patients with severe sepsis, there is no association between mean arterial pressure achieved and outcome as long as the mean arterial pressure is maintained at or above 70 mmHg. Although these data add important new evidence to our understanding of arterial pressure management, there are still many unanswered questions upon which future investigations should focus.
-
Measuring extravascular lung water may be useful for predicting outcome in adults with acute lung injury. The present commentary briefly reviews the potential role and limitations of extravascular lung water measurement in critically ill children.
-
Hypothermia improves survival and neurological recovery after cardiac arrest. Pro-inflammatory cytokines have been implicated in focal cerebral ischemia/reperfusion injury. It is unknown whether cardiac arrest also triggers the release of cerebral inflammatory molecules, and whether therapeutic hypothermia alters this inflammatory response. This study sought to examine whether hypothermia or the combination of hypothermia with anesthetic post-conditioning with sevoflurane affect cerebral inflammatory response after cardiopulmonary resuscitation. ⋯ Mild therapeutic hypothermia resulted in decreased expression of typical cerebral inflammatory mediators after cardiopulmonary resuscitation. This may confer, at least in part, neuroprotection following global cerebral ischemia and resuscitation.
-
Dead space negatively influences carbon dioxide (CO(2)) elimination, particularly at high respiratory rates (RR) used at low tidal volume ventilation in acute respiratory distress syndrome (ARDS). Aspiration of dead space (ASPIDS), a known method for dead space reduction, comprises two mechanisms activated during late expiration: aspiration of gas from the tip of the tracheal tube and gas injection through the inspiratory line - circuit flushing. The objective was to study the efficiency of circuit flushing alone and of ASPIDS at wide combinations of RR and tidal volume (V(T)) in anaesthetized pigs. The hypothesis was tested that circuit flushing and ASPIDS are particularly efficient at high RR. ⋯ At high RR, re-breathing of CO(2) from the y-piece and tubing becomes important. Circuit flushing and ASPIDS, which significantly reduce tubing dead space and PaCO2, merit further clinical studies.