Critical care : the official journal of the Critical Care Forum
-
This review summarizes new insights in the pathophysiologic implications of inflammation and microvascular alterations in organ dysfunction, as well as genetic factor contribution, from clinical and experimental studies that were published in 2010 in Critical Care in the fields of multiple organ dysfunction and sepsis. New diagnostic and prognostic markers of organ dysfunction are presented. Evaluations of novel therapeutic strategies, including implementation of international guidelines, modulation of inflammation and coagulation, and prevention of ventilator-induced lung injury and acute kidney injury, are reported. The results of these experimental studies and clinical trials are discussed in the context of the current relevant scientific and clinical background.
-
Acute kidney injury (AKI) is common in critically ill patients and associated with important morbidity and mortality. Although alterations in renal perfusion are thought to play a causative role in the pathogenesis of AKI, there is, to date, no reliable technique that allows the assessment of renal perfusion that is applicable in the ICU. Contrast-enhanced ultrasound (CEUS) is an ultrasound imaging technique that makes use of microbubble-based contrast agents. ⋯ Current generation ultrasound contrast agents have strong stability and safety profiles. Along with post-marketing surveillance, numerous studies report safe administration of these agents, including in critically ill patients. This review presents information on the physical principles underlying CEUS, the methods allowing blood flow quantification and the potential applications of CEUS in critical care nephrology, currently as a research tool but perhaps in the future as a way of monitoring renal perfusion.
-
In modern critical care, the paradigm of 'therapeutic nutrition' is replacing traditional 'supportive nutrition'. Standard enteral formulas meet basic macro- and micronutrient needs; therapeutic enteral formulas meet these basic needs and also contain specific pharmaconutrients that may attenuate hyperinflammatory responses, enhance the immune responses to infection, or improve gastrointestinal tolerance. Choosing the right enteral feeding formula may positively affect a patient's outcome; targeted use of therapeutic formulas can reduce the incidence of infectious complications, shorten lengths of stay in the ICU and in the hospital, and lower risk for mortality. ⋯ We discuss what to feed these patients in the context of specific pharmaconutrients in specialized feeding formulations, that is, arginine, glutamine, antioxidants, certain ω-3 and ω-6 fatty acids, hydrolyzed proteins, and medium-chain triglycerides. We summarize current expert guidelines for nutrition in patients with critical illness, and we present specific clinical evidence on the use of enteral formulas supplemented with anti-inflammatory or immune-modulating nutrients, and gastrointestinal tolerance-promoting nutritional formulas. Finally, we introduce an algorithm to help bedside clinicians make data-driven feeding decisions for patients with critical illness.
-
Multicenter Study
Bacteremia is an independent risk factor for mortality in nosocomial pneumonia: a prospective and observational multicenter study.
Since positive blood cultures are uncommon in patients with nosocomial pneumonia (NP), the responsible pathogens are usually isolated from respiratory samples. Studies on bacteremia associated with hospital-acquired pneumonia (HAP) have reported fatality rates of up to 50%. The purpose of the study is to compare risk factors, pathogens and outcomes between bacteremic nosocomial pneumonia (B-NP) and nonbacteremic nosocomial pneumonia (NB-NP) episodes. ⋯ B-NP episodes are more frequent in patients with medical admission, MRSA and A. baumannii etiology and prolonged mechanical ventilation, and are independently associated with higher mortality rates.
-
Brain or lung injury or both are frequent causes of admission to intensive care units and are associated with high morbidity and mortality rates. Mechanical ventilation, which is commonly used in the management of these critically ill patients, can induce an inflammatory response, which may be involved in distal organ failure. Thus, there may be a complex crosstalk between the lungs and other organs, including the brain. ⋯ Such neurologic dysfunction might be a secondary marker of injury and the neuroanatomical substrate for downstream impairment of other organs. Brainlung interactions have received little attention in the literature, but recent evidence suggests that both the lungs and brain can promote inflammation through common mediators. The present commentary discusses the main physiological issues related to brain-lung interactions.