Critical care : the official journal of the Critical Care Forum
-
Comparative Study
Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery.
The RIFLE (risk, injury, failure, loss of kidney function, and end-stage renal failure) classification for acute kidney injury (AKI) was recently modified by the Acute Kidney Injury Network (AKIN). The two definition systems differ in several aspects, and it is not clearly determined which has the better clinical accuracy. ⋯ Modification of RIFLE by staging of all patients with acute renal replacement therapy (RRT) in the failure class F may improve predictive value. AKIN applied in patients undergoing cardiac surgery without correction of serum creatinine for fluid balance may lead to over-diagnosis of AKI (poor positive predictive value). Balancing limitations of both definition sets of AKI, we suggest application of the RIFLE criteria in patients undergoing cardiac surgery.
-
suPAR is the soluble form of the urokinase plasminogen activator receptor (uPAR), which is expressed in various immunologically active cells. High suPAR serum concentrations are suggested to reflect the activation of the immune system in circumstances of inflammation and infection, and have been associated with increased mortality in different populations of non-intensive care patients. In this study we sequentially analyzed suPAR serum concentrations within the first week of intensive care in a large cohort of well characterized intensive care unit (ICU) patients, in order to investigate potential regulatory mechanisms and evaluate the prognostic significance in critically ill patients. ⋯ In sepsis and non-sepsis patients suPAR serum concentrations are increased upon admission to the ICU, likely reflecting the activation state of the immune system, and remain stably elevated in the initial course of treatment. Low suPAR levels are a positive predictor of ICU- and overall survival in critically ill patients, including sepsis and non-sepsis patients. Aside from its value as a promising new prognostic biomarker, both experimental and clinical studies are required in order to understand the specific effects and regulatory mechanisms of suPAR in SIRS and sepsis, and may reveal new therapeutic options.
-
Genetic variability of the pulmonary surfactant proteins A and D may affect clearance of microorganisms and the extent of the inflammatory response. The genes of these collectins (SFTPA1, SFTPA2 and SFTPD) are located in a cluster at 10q21-24. The objective of this study was to evaluate the existence of linkage disequilibrium (LD) among these genes, and the association of variability at these genes with susceptibility and outcome of community-acquired pneumonia (CAP). We also studied the effect of genetic variability on SP-D serum levels. ⋯ Our study indicates that missense single nucleotide polymorphisms and haplotypes of SFTPA1, SFTPA2 and SFTPD are associated with susceptibility to CAP, and that several haplotypes also influence severity and outcome of CAP.
-
To estimate the incidence of intensive care unit (ICU)-acquired bloodstream infection (BSI) and its independent effect on hospital mortality. ⋯ ICU-acquired BSI is associated with greater in-hospital mortality, but complicates only 5% of ICU admissions and its absolute effect on population mortality is limited. These findings have implications for the design and interpretation of clinical trials.
-
Dysphagia is common among survivors of critical illness who required mechanical ventilation during treatment. The risk factors associated with the development of postextubation dysphagia, and the effects of dysphagia on patient outcomes, have been relatively unexplored. ⋯ In a large cohort of critically ill patients, long duration of mechanical ventilation was independently associated with postextubation dysphagia, and the development of postextubation dysphagia was independently associated with poor patient outcomes.