Critical care : the official journal of the Critical Care Forum
-
Retrospective studies have demonstrated a potential survival benefit from transfusion strategies using an early and more balanced ratio between fresh frozen plasma (FFP) concentration and packed red blood cell (pRBC) transfusions in patients with acute traumatic coagulopathy requiring massive transfusions. These results have mostly been derived from non-head-injured patients. The aim of the present study was to analyze whether a regime using a high FFP:pRBC transfusion ratio (FFP:pRBC ratio >1:2) would be associated with a similar survival benefit in severely injured patients with traumatic brain injury (TBI) (Abbreviated Injury Scale (AIS) score, head ≥ 3) as demonstrated for patients without TBI requiring massive transfusion (≥ 10 U of pRBCs). ⋯ These results add more detailed knowledge to the concept of a high FFP:pRBC ratio during early aggressive resuscitation, including massive transfusion, to decrease mortality in severely injured patients both with and without accompanying TBI. Future research should be conducted with a larger number of patients to prove these results in a prospective study.
-
Fluid resuscitation is a cornerstone of intensive care unit patient care, but prediction of the cardiovascular response remains difficult, despite many efforts in clinical research. The concept of responders and nonresponders illustrates such a difficulty. Many techniques have been tested, from strictly non-invasive to invasive, delivering various parameters related to the fluid challenge response. ⋯ This published study tested in the postoperative period of cardiovascular surgery the prediction obtained with filling pressures and the diastolic volume. When left ventricular function (global ejection fraction) is adequate, the volume before fluid administration seems to predict well the fluid challenge response; whereas when the global ejection fraction is poor, the filling pressure seems more suitable. The present commentary discusses the main physiological issues related to these findings, with some methodological aspects.
-
Recently, a multicenter randomized controlled trial (RCT) by Cooper and colleagues indicated that decompressive craniectomy (DC) may be associated with a worse functional outcome in patients with diffuse traumatic brain injury (TBI), although DC can immediately and constantly reduce intracranial pressure (ICP). As this trial is well planned and of high quality, the unexpected result is meaningful. However, the evidence of the study is insufficient and the effect of DC in severe TBI is still uncertain. Additional multicenter RCTs are necessary to provide class I evidence on the role of DC in the treatment of refractory raised ICP after severe TBI.
-
Editorial Comment
Finding new therapies for sepsis: the need for patient stratification and the use of genetic biomarkers.
Reversing the immunoparalysis associated with septic shock remains a priority for improving the outcome of patients suffering from sepsis. The efficacy of future therapies may be better studied under an effective system of patient stratification. Gene expression biomarkers offer a mechanism by which patients may be appropriately stratified in such clinical trials.
-
Editorial
SvO2 to monitor resuscitation of septic patients: let's just understand the basic physiology.
Real-time monitoring of mixed venous oxygen blood saturation (SvO2) or of central venous oxygen blood saturation is often used during resuscitation of septic shock. However, the meaning of these parameters is far from straightforward. In the present commentary, we emphasize that SvO2--a global marker of tissue oxygen balance--can never be simplistically used as a marker of preload responsiveness, which is an intrinsic marker of cardiac performance. ⋯ In other patients, because of a profound impairment of oxygen extraction capacities, SvO2 can be abnormally high even in patients who are still able to respond positively to fluid infusion. In any case, other reliable dynamic parameters can help to address the important question of fluid responsiveness/unresponsiveness. However, whether fluid administration in fluid responders and high SvO2 would be efficacious to reduce tissue dysoxia in the most injured tissues is still uncertain.