Critical care : the official journal of the Critical Care Forum
-
End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes. ⋯ In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy.
-
We review key research papers in cardiology and intensive care published during 2010 in Critical Care and quote related studies published in other journals if appropriate. Papers were grouped into the following categories: cardiovascular therapies, biomarkers, hemodynamic monitoring, cardiovascular diseases, and microcirculation.
-
Randomized Controlled Trial
Long-term psychological effects of a no-sedation protocol in critically ill patients.
A protocol of no sedation has been shown to reduce the time patients receive mechanical ventilation and to reduce intensive care and total hospital length of stay. The long-term psychological effects of this strategy have not yet been described. The purpose of the study was to test whether a strategy of no sedation alters long-term psychological outcome compared with a standard strategy with sedation. ⋯ Our data suggest that a protocol of no sedation applied to critically ill patients undergoing mechanical ventilation does not increase the risk of long-term psychological sequelae after intensive care compared with standard treatment with sedation.
-
Supplementary oxygen is routinely administered to patients, even those with adequate oxygen saturations, in the belief that it increases oxygen delivery. But oxygen delivery depends not just on arterial oxygen content but also on perfusion. It is not widely recognized that hyperoxia causes vasoconstriction, either directly or through hyperoxia-induced hypocapnia. ⋯ This mechanism, and not (just) that attributed to reactive oxygen species, is likely to contribute to the worse outcomes in patients given high-concentration oxygen in the treatment of myocardial infarction, in postcardiac arrest, in stroke, in neonatal resuscitation and in the critically ill. The mechanism may also contribute to the increased risk of mortality in acute exacerbations of chronic obstructive pulmonary disease, in which worsening respiratory failure plays a predominant role. To avoid these effects, hyperoxia and hypocapnia should be avoided, with oxygen administered only to patients with evidence of hypoxemia and at a dose that relieves hypoxemia without causing hyperoxia.
-
Sepsis is the primary cause of death in the intensive care unit. Extracorporeal blood purification therapies have been proposed for patients with sepsis in order to improve outcomes since these therapies can alter the host inflammatory response by non-selective removal of inflammatory mediators or bacterial products or both. Recent technological progress has increased the number of techniques available for blood purification and their performance. ⋯ Promising results have been reported with all of these blood purification therapies, showing that they are well tolerated, effective in clearing inflammatory mediators or bacterial toxins (or both) from the plasma, and efficacious for improvement of various physiologic outcomes (for example, hemodynamics and oxygenation). However, numerous questions, including the timing, duration, and frequency of these therapies in the clinical setting, remain unanswered. Large multicenter trials evaluating the ability of these therapies to improve clinical outcomes (that is, mortality or organ failure), rather than surrogate markers such as plasma mediator clearance or transient improvement in physiologic variables, are required to define the precise role of blood purification in the management of sepsis.