Critical care : the official journal of the Critical Care Forum
-
As your hospital's ICU director, you are approached by the hospital's administration to help solve ongoing problems with ICU bed availability. The ICU seems to be constantly full, and trauma patients in the emergency department sometimes wait up to 24 hours before receiving a bed. Additionally, the cardiac surgeons were forced to cancel several elective coronary-artery bypass graft cases because there was not a bed available for postoperative recovery. The hospital administrators ask whether you can decrease your ICU length of stay, and wonder whether they should expand the ICU to include more beds For help in understanding and optimizing your ICU's throughput, you seek out the operations management researchers at your university.
-
Because patient-ventilator asynchrony (PVA) is recognized as a major clinical problem for patients undergoing ventilatory assistance, automatic methods of PVA detection have been proposed in recent years. A novel approach is airflow spectral analysis, which, when related to visual inspection of airway pressure and flow waveforms, has been shown to reach a sensitivity and specificity of greater than 80% in detecting an asynchrony index of greater than 10%. The availability of automatic non-invasive methods of PVA detection at the bedside would likely be of benefit in intensive care unit practice, but they may be limited by shortcomings, so clear proof of their effectiveness is needed.
-
The aim of this study was to evaluate dynamic indices of fluid responsiveness in a model of intra-abdominal hypertension. ⋯ In intra-abdominal hypertension, respiratory variations in stroke volume and arterial pressure remain indicative of fluid responsiveness, even if threshold values identifying responders and non-responders might be higher than during normal intra-abdominal pressure. Further studies are required in humans to determine these thresholds in intra-abdominal hypertension.
-
Protocols using high levels of positive end-expiratory pressure (PEEP) in combination with low tidal volumes have been shown to reduce mortality in patients with severe acute respiratory distress syndrome (ARDS). However, the optimal method for setting PEEP is yet to be defined. It has been shown that respiratory system reactance (Xrs), measured by the forced oscillation technique (FOT) at 5 Hz, may be used to identify the minimal PEEP level required to maintain lung recruitment. The aim of the present study was to evaluate if using Xrs for setting PEEP would improve lung mechanics and reduce lung injury compared to an oxygenation-based approach. ⋯ In a lavage model of lung injury a PEEP optimization strategy based on maximizing Xrs attenuated the signs of ventilator induced lung injury. The respiratory system reactance measured by FOT could thus be an important component in a strategy for delivering protective ventilation to patients with ARDS/acute lung injury.
-
Somatosensory evoked potential (SEP) recordings and continuous electroencephalography (EEG) are important tools with which to predict Glasgow Outcome Scale (GOS) scores. Their combined use may potentially allow for early detection of neurological impairment and more effective treatment of clinical deterioration. ⋯ The combined use of SEPs and continuous EEG monitoring is a unique example of dynamic brain monitoring. The temporal variation of these two parameters evaluated by continuous monitoring can establish whether the treatments used for patients receiving neurocritical care are properly tailored to the neurological changes induced by the lesions responsible for secondary damage.