Critical care : the official journal of the Critical Care Forum
-
Ultrasound measurements of brachial artery reactivity in response to stagnant ischemia provide estimates of microvascular function and conduit artery endothelial function. We hypothesized that brachial artery reactivity would independently predict severe sepsis and severe sepsis mortality. ⋯ Brachial artery hyperemic blood velocity is a noninvasive index of microvascular function that independently predicts mortality in severe sepsis. In contrast, brachial artery flow-mediated dilation, reflecting conduit artery endothelial function, was not associated with mortality in our severe sepsis cohort. Brachial artery hyperemic velocity may be a useful measurement to identify patients who could benefit from novel therapies designed to reverse microvascular dysfunction in severe sepsis and to assess the physiologic efficacy of these treatments.
-
Observational Study
Steroidogenesis in the adrenal dysfunction of critical illness: impact of etomidate.
This study was aimed at characterizing basal and adrenocorticotropic hormone (ACTH)-induced steroidogenesis in sepsis and nonsepsis patients with a suspicion of critical illness-related corticosteroid insufficiency (CIRCI), taking the use of etomidate-inhibiting 11β-hydroxylase into account. ⋯ A single dose of etomidate may attenuate stimulated more than basal cortisol synthesis. However, it may only partly contribute, particularly in the stressed sepsis patient, to the adrenal dysfunction of CIRCI, in addition to substrate deficiency.
-
Fluid overload is a clinical problem frequently related to cardiac and renal dysfunction. The aim of this study was to evaluate fluid overload and changes in serum creatinine as predictors of cardiovascular mortality and morbidity after cardiac surgery. ⋯ Although both fluid overload and changes in serum creatinine are prognostic markers after cardiac surgery, it seems that progressive fluid overload may be an earlier and more sensitive marker of renal dysfunction affecting heart function and, as such, it would allow earlier intervention and more effective control in post cardiac surgery patients.
-
Editorial Comment
Non-invasive mechanical ventilation in hematology patients: let's agree on several things first.
Acute respiratory failure is a dreaded and life-threatening event that represents the main reason for ICU admission. Respiratory events occur in up to 50% of hematology patients, including one-half of those admitted to the ICU. Mortality from acute respiratory failure in hematology patients depends on the patient's general status, acute respiratory failure etiology, need for mechanical ventilation and associated organ dysfunction. ⋯ There is growing concern about the safety of non-invasive mechanical ventilation to treat hypoxemic acute respiratory failure overall, but also in hematology patients. Prophylactic non-invasive mechanical ventilation in patients with acute respiratory failure but not respiratory distress seems to be effective in hematology patients with a reduced rate of intubation. However, curative non-invasive mechanical ventilation should be restricted to those patients with isolated respiratory failure, with fast improvement of respiratory distress under non-invasive mechanical ventilation, and with rapid switch to intubation to avoid deleterious delays in optimal invasive mechanical ventilation.
-
Acute hemorrhage after life-threatening injury is still one of the main killers after trauma. The article by Brockamp and colleagues presents a good overview of recent scores for estimation of blood loss and transfusion requirement.