Critical care : the official journal of the Critical Care Forum
-
The paper by Park and colleagues in the previous issue of Critical Care highlights vascular changes in electrical injury and finds them to be relatively long-lasting and significant. This finding is consistent with long-lasting disability seen clinically in electrically injured patients. Furthermore, the authors report that the changes seen in the shocked part of the body are accompanied by similar changes that are measurable in other parts of the body but that are not involved with electric current. ⋯ Recent psychiatric research indicates the importance of circulating cortisol and brain-derived neurotrophic factor (BDNF), which causes loss of hippocampal volume, in the genesis of depression. This psychiatric research has stimulated a speculative theory of the genesis of the psychological effects of electric shock. The paper by Park and colleagues is circumstantial support for the possibility that such a process is real and available.
-
Fever is considered a key actor of innate immunity aimed to fight infection. A new investigation reports an association of the use of antipyretic drugs with poorer outcome among patients with sepsis. In contrast, high temperature in non-infectious intensive care patients is associated with higher mortality.
-
It is well established that during mechanical ventilation of patients with acute respiratory distress syndrome cyclic recruitment/derecruitment and overdistension are potentially injurious for lung tissues. We evaluated whether the forced oscillation technique (FOT) could be used to guide the ventilator settings in order to minimize cyclic lung recruitment/derecruitment and cyclic mechanical stress in an experimental model of acute lung injury. ⋯ Using FOT it was possible to measure EX5 both at end-expiration and at end-inspiration. The optimal PEEP strategy based on end-expiratory EX5 minimized intra-tidal recruitment/derecruitment as assessed by CT, and the concurrent attenuation of intra-tidal variations of EX5 suggests that it may also minimize tidal mechanical stress.