Critical care : the official journal of the Critical Care Forum
-
Early mobilization (EM) of ICU patients is a physiologically logical intervention to attenuate critical illness-associated muscle weakness. However, its long-term value remains controversial. We performed a detailed analytical review of the literature using multiple relevant key terms in order to provide a comprehensive assessment of current knowledge on EM in critically ill patients. ⋯ In addition, new technology to facilitate EM such as cycle ergometry, transcutaneous electrical muscle stimulation and video therapy are increasingly being used to achieve such EM despite limited evidence of efficacy. We conclude that although preliminary low-level evidence suggests that EM in the ICU is safe, feasible and may yield clinical benefits, EM is also labor-intensive and requires appropriate staffing models and equipment. More research is thus required to identify current standard practice, optimal EM techniques and appropriate outcome measures before EM can be introduced into the routine care of critically ill patients.
-
Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. ⋯ Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.
-
Recent studies challenge the beneficial role of artificial nutrition provided to critically ill patients and point out the limitations of existing studies in this area. We take a differing view of the existing data and refute many of the arguments put forward by previous authors. ⋯ We conclude without question that more, high-quality research is needed to better define the role of artificial nutrition in the critical care setting, but until then early and adequate delivery of enteral nutrition is a legitimate, evidence-based treatment recommendation and we see no evidence-based role for restricting enteral nutrition in critically ill patients. The role of early supplemental parenteral nutrition continues to be defined as new data emerge.
-
The clinical, human and economic burden associated with sepsis is huge. Initiatives such as the Surviving Sepsis Campaign aim to effectively reduce risk of death from severe sepsis and septic shock. Nonetheless, although substantial benefits raised from the implementation of this campaign have been obtained, much work remains if we are to realise the full potential promised by this strategy. ⋯ At the genomic level, repression of networks corresponding to major histocompatibility complex antigen presentation is observed in septic shock. In consequence, cumulative evidence supports the potential role of immunological monitoring to guide measures to prevent or treat sepsis in a personalised and timely manner (early antibiotic administration, immunoglobulin replacement, immunomodulation). In conclusion, although diffuse and limited, current available information supports the development of large comprehensive studies aimed to urgently evaluate immunological monitoring as a tool to prevent sepsis, guide its treatment and, as a consequence, diminish the morbidity and mortality associated with this severe condition.
-
Assessment and monitoring of hemodynamics is a cornerstone in critically ill patients as hemodynamic alteration may become life-threatening in a few minutes. Defining normal values in critically ill patients is not easy, because 'normality' is usually referred to healthy subjects at rest. Defining 'adequate' hemodynamics is easier, which embeds whatever pressure and flow set is sufficient to maintain the aerobic metabolism. ⋯ An accepted target is ScvO2 >70%, although this ignores the arterial underfilling associated with volume expansion/high flow. For large-volume resuscitation the worst solution is normal saline solution (chloride load, strong ion difference = 0, acidosis). To avoid changes in acid-base equilibrium the strong ion difference of the infused solution should be equal to the baseline bicarbonate concentration.