Critical care : the official journal of the Critical Care Forum
-
Admission blood glucose (BG) level is a predictor of mortality in patients with ST-segment elevation myocardial infarction (STEMI). However, limited data are available relating admission BG to mortality in patients with STEMI complicated by cardiogenic shock, and it is not known whether diabetic status has an independent effect on this relationship. ⋯ In a cohort of patients with STEMI complicated by cardiogenic shock, admission BG was an independent predictor of increased risk of mortality only among patients without DM.
-
Our aim was to describe inflammatory cytokines response in the peritoneum and plasma of patients with peritonitis. We also tested the hypothesis that scenarios associated with worse outcome would result in different cytokine release patterns. Therefore, we compared cytokine responses according to the occurrence of septic shock, mortality, type of peritonitis and peritoneal microbiology. ⋯ Peritonitis triggers an acute systemic and peritoneal innate immune response with a simultaneous release of pro and anti-inflammatory cytokines. Higher levels of all cytokines were observed in the plasma of patients with the most severe conditions (shock, non-survivors), but this difference was not reflected in their peritoneal fluid. There was always a large gradient in cytokine concentration between peritoneal and plasma compartments highlighting the importance of compartmentalization of innate immune response in peritonitis.
-
Current hemodynamic monitoring of critically ill patients is mainly focused on monitoring of pressure-derived hemodynamic variables related to systemic circulation. Increasingly, oxygen transport pathways and indicators of the presence of tissue dysoxia are now being considered. In addition to the microcirculatory parameters related to oxygen transport to the tissues, it is becoming increasingly clear that it is also important to gather information regarding the functional activity of cellular and even subcellular structures to gain an integrative evaluation of the severity of disease and the response to therapy. ⋯ This complexity of information requires integration of the variables being monitored, which requires mathematical models based on physiology to reduce the complexity of the information and provide the clinician with a road map to guide therapy and assess the course of recovery. In this paper, we review the state of the art of these developments and speculate on the future, in which we predict a physiological monitoring environment that is able to integrate systemic hemodynamic and oxygen-derived variables with variables that assess the peripheral circulation and microcirculation, extending this real-time monitoring to the functional activity of cells and their constituents. Such a monitoring environment will ideally relate these variables to the functional state of various organ systems because organ function represents the true endpoint for therapeutic support of the critically ill patient.
-
Dialysis-requiring acute kidney injury (D-AKI) is common among intensive care unit (ICU) patients. However, follow-up data on the risk of end-stage renal disease (ESRD) among these patients remain sparse. We assessed the short-term and long-term risk of ESRD after D-AKI, compared it with the risk in other ICU patients, and examined the risk within subgroups of ICU patients. ⋯ D-AKI is an important risk factor for ESRD for up to five years after ICU admission.
-
Lung-protective ventilation in patients with ARDS and multiorgan failure, including renal failure, is often paralleled with a combined respiratory and metabolic acidosis. We assessed the effectiveness of a hollow-fiber gas exchanger integrated into a conventional renal-replacement circuit on CO₂ removal, acidosis, and hemodynamics. ⋯ Because no further catheters are needed, besides those for renal replacement, the implementation of a hollow-fiber gas exchanger in a renal circuit could be an attractive therapeutic tool with only a little additional trauma for patients with mild to moderate ARDS undergoing invasive ventilation with concomitant respiratory acidosis, as long as no severe oxygenation defects indicate ECMO therapy.