Critical care : the official journal of the Critical Care Forum
-
In acute respiratory distress syndrome (ARDS), combined high-frequency oscillation (HFO) and tracheal gas insufflation (TGI) improves gas exchange compared with conventional mechanical ventilation (CMV). We evaluated the effect of HFO-TGI on PaO2/fractional inspired O2 (FiO2) and PaCO2, systemic hemodynamics, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) in patients with traumatic brain injury (TBI) and concurrent severe ARDS. ⋯ In TBI/ARDS patients, HFO-TGI may improve oxygenation and respiratory mechanics, without adversely affecting PaCO2, hemodynamics, or ICP. These findings support the use of HFO-TGI as a rescue ventilatory strategy in patients with severe TBI and imminent oxygenation failure due to severe ARDS.
-
Editorial Comment
Rigorous scoping review of randomized trials in pediatric critical care highlights need for a rigorous rethink.
The randomized controlled trial (RCT) remains the highest-ranked study design when grading recommendations for clinical practice. In the previous issue of Critical Care, Duffett and colleagues published a scoping review of RCTs in pediatric critical care medicine and identified some serious gaps in the body of research underlying the field. Relatively few published RCTs were identified, and they were mostly small and potentially susceptible to bias. ⋯ First, one must assess current clinical practice and disease prevalence, refine definitions and measurements, and pilot-test the intervention to be studied. The first step, however, is to rigorously assess what has already been done. This step will be facilitated by the now available, innovative, online, searchable repository of RCTs in pediatric critical care on the Evidence in Pediatric Critical Care website.
-
The clinical significance of elevation of lactate levels within the reference range is not well studied. The objective of this study was to determine the best cutoff threshold for serum lactate within the reference range (0.01 to 2.00 mM) that best discriminated between survivors and nonsurvivors of critical illness and to examine the association between relative hyperlactatemia (lactate above the identified threshold) and mortality. ⋯ Relative hyperlactatemia (lactate of 1.36 to 2.00 mM) within the first 24 hours of ICU admission is an independent predictor of hospital and ICU mortality in critically ill patients.
-
The obesity paradox has been used to describe the observed phenomenon described by several studies that indicated improved survival for critically ill patients with mild to moderate obesity when compared with their lean counterparts. The study by Arabi and coworkers challenges the obesity paradox concept for critically ill obese patients with septic shock. Their data indicate that obesity, per se, does not significantly improve mortality when outcomes are adjusted for differences in baseline characteristics and sepsis interventions. Further studies are needed to assess the influence of body weight, lean weight, and fat mass for optimizing fluid resuscitation, pharmacotherapy, and nutritional therapy for critically ill patients with sepsis.
-
Gene expression profiling was performed via DNA microarrays in leukocytes from critically ill trauma patients nonseptic upon admission to the ICU, who subsequently developed either sepsis (n = 2) or severe sepsis and acute respiratory distress syndrome (n = 3). By comparing our results with published expression profiling studies in animal models of sepsis and lung injury, we found aquaporin-1 to be differentially expressed across all studies. Our aim was to determine how the water channel aquaporin-1 is involved in regulating the immune response in critically ill patients during infection acquired in the ICU. ⋯ Aquaporin-1 is induced in leukocytes of patients with ICU-acquired sepsis and exhibits higher expression in septic shock. This phenomenon may be due to LPS-triggered NF-κB activation that can also lead to alterations in plasma membrane permeability.