Critical care : the official journal of the Critical Care Forum
-
Observational Study
Early diagnosis of sepsis-related hepatic dysfunction and its prognostic impact on survival: a prospective study with the LiMAx test.
Liver dysfunction can derive from severe sepsis and might be associated with poor prognosis. However, diagnosis of septic liver dysfunction is challenging due to a lack of appropriate tests. Measurement of maximal liver function capacity (LiMAx test) has been successfully evaluated as a new diagnostic test in liver resection and transplantation. The aim of this study was to evaluate the LiMAx test during sepsis in comparison to biochemical tests and the indocyanin green test (ICG-PDR). ⋯ Sepsis-related hepatic dysfunction can be diagnosed early and effectively by the LiMAx test. The extent of LiMAx impairment is predictive for patient morbidity and mortality. The sensitivity and specificity of the LiMAx test was superior to that of ICG-PDR regarding the prediction of mortality.
-
Plasma levels of cell-free hemoglobin are associated with mortality in patients with sepsis; however descriptions of independent associations with free hemoglobin and free heme scavengers, haptoglobin and hemopexin, are lacking beyond their description as acute phase reactants. We sought to determine the association of plasma levels of endogenous free hemoglobin and haptoglobin and hemopexin with in-hospital mortality in adults with sepsis. ⋯ In critically ill patients with sepsis, elevated plasma levels of haptoglobin were associated with a decreased risk of in-hospital mortality and this association was independent of confounders. Increased haptoglobin may play a protective role in sepsis patients who have elevated levels of circulating cell-free hemoglobin beyond its previous description as an acute phase reactant.
-
Over the last two decades, considerable progress has been made in the understanding of disease mechanisms and infection control strategies related to infections, particularly pneumonia, in critically ill patients. Patient-centered and preventative strategies assume paramount importance in this era of limited health-care resources, in which effective targeted therapy is required to achieve the best outcomes. ⋯ Cooperation, education, and interaction between multiple disciplines in the intensive care unit are required to limit the spread of resistant pathogens and to improve care. In this review, we summarize findings from major publications over the last year in the field of respiratory infections in critically ill patients, putting an emphasis on a newer understanding of pathogenesis, use of biomarkers, and antibiotic stewardship and examining new treatment options and preventive strategies.
-
Multicenter Study
Kinetics of circulating immunoglobulin M in sepsis: relationship with final outcome.
The aim of this study was to investigate the kinetics of immunoglobulin M (IgM) during the different stages of sepsis. ⋯ Specific changes of circulating IgM occur when patients with severe sepsis progress into septic shock. The distribution of IgM is lower among non-survivors.
-
Glucose control to prevent both hyperglycemia and hypoglycemia is important in an intensive care unit. Arterial blood gas analyzers and glucose meters are commonly used to measure blood-glucose concentration in an intensive care unit; however, their accuracies are still unclear. ⋯ Our literature review showed that the accuracy of blood-glucose measurements with arterial blood gas analyzers was significantly higher than that of measurements with glucose meters by using capillary blood and tended to be higher than that of measurements with glucose meters by using arterial blood. These results should be interpreted with caution because of the large variation of accuracy among devices. Because blood-glucose monitoring was less accurate within or near the hypoglycemic range, especially in patients with unstable hemodynamics or receiving insulin infusion, we should be aware that current blood glucose-monitoring technology has not reached a high enough degree of accuracy and reliability to lead to appropriate glucose control in critically ill patients.