Critical care : the official journal of the Critical Care Forum
-
The rapid and accurate prediction of the need for massive transfusion in bleeding trauma patients remains a challenge. Various models have been proposed to anticipate massive transfusion with variable success. The current study by Mutschler and colleagues proposes four classes of shock as defined by the Shock Index and examines its ability to predict the need for massive transfusion. This model demonstrates promise as a practical tool in acute decision-making for transfusion after injury.
-
Observational Study
Plasma levels of mitochondrial and nuclear DNA in patients with massive pulmonary embolism in the emergency department: a prospective cohort study.
Cell-free plasma mitochondrial DNA (mt-DNA) and nuclear DNA (n-DNA) are biomarkers with prognostic utility in conditions associated with a high rate of cell death. This exploratory study aimed to determine the plasma levels of both nucleic acids in patients with massive and submassive pulmonary embolism (PE) and to compare them with other biomarkers, such as heart-type fatty acid-binding protein (H-FABP) and troponin I (Tn-I) METHODS: This was a prospective observational study of 37 consecutive patients with massive PE, 37 patients with submassive PE, and 37 healthy subjects. Quantifications of plasma mt-DNA and n-DNA with real-time quantitative polymerase chain reaction (PCR), and plasma H-FABP and Tn-I by commercial assays, were done on blood samples drawn within 4 hours after presentation at the emergency department. ⋯ mt-DNA and H-FBAP might be promising markers for predicting 15-day mortality in massive PE, with mt-DNA having better prognostic accuracy.
-
Blood acidification by lactic acid infusion converts bicarbonate to CO2. This effect can be exploited to increase the transmembrane PCO2 gradient of an extracorporeal membrane lung, resulting in a significant increase of extracorporeal CO2 removal. Lactic acid, however, is an energetic substrate and its metabolism might increase total body CO2 production (VCO2), limiting the potential beneficial effects of this technique. The aim of our study was to compare VCO2 during isocaloric infusion of lactic acid or glucose. ⋯ Replacing 50% of the caloric input with lactic acid increased total CO2 production by less than 5% compared to an equal caloric load provided entirely by a 50% glucose solution.
-
A protective role for glucocorticoid therapy in animal models of sepsis was shown many decades ago. In human sepsis, there is new interest in glucocorticoid therapy at a physiological dose after reports of improved response to vasopressor drugs and decreased mortality in a selected group of patients. However, other reports have not confirmed these results. Cellular glucocorticoid resistance could explain a possible cause of that. To evaluate this hypothesis, we evaluated the expression of glucocorticoid receptor beta, the dominant negative isoform of glucocorticoid receptor, in peripheral mononuclear cells of septic patients and the effect of serum septic patients over glucocorticoid receptor expression and glucocorticoid sensitivity in immune cells culture. ⋯ There is a transient increased expression of glucocorticoid receptor beta in mononuclear cells from septic patients. Serum from septic patients induces cell glucocorticoid resistance in vitro. Our findings support a possible cell glucocorticoid resistance in sepsis.