Critical care : the official journal of the Critical Care Forum
-
Haemorrhagic shock is associated with an inflammatory response consecutive to ischaemia-reperfusion (I/R) that leads to cardiovascular failure and organ injury. The role of and the timing of administration of hydrogen sulphide (H2S) remain uncertain. Vascular effects of H2S are mainly mediated through K+ATP-channel activation. Herein, we compared the effects of D,L-propargylglycine (PAG), an inhibitor of H2S production, as well as sodium hydrosulphide (NaHS), an H2S donor, on haemodynamics, vascular reactivity and cellular pathways in a rat model of I/R. We also compared the haemodynamic effects of NaHS administered before and 10 minutes after reperfusion. ⋯ NaHS when given before reperfusion protects against the effects of haemorrhage-induced I/R by acting primarily through a decrease in both proinflammatory cytokines and inducible nitric oxide synthase expression and an upregulation of the Akt/endothelial nitric oxide synthase pathway.
-
Observational Study
Pattern of brain injury in the acute setting of human septic shock.
Sepsis-associated brain dysfunction has been linked to white matter lesions (leukoencephalopathy) and ischemic stroke. Our objective was to assess the prevalence of brain lesions in septic shock patients requiring magnetic resonance imaging (MRI) for an acute neurologic change. ⋯ Brain MRI in septic shock patients who developed acute brain dysfunction can reveal leukoencephalopathy and ischemic stroke, which is associated with DIC and increased mortality.
-
The overall outcome of septic shock has been recently improved. We sought to determine whether this survival gain extends to the high-risk subgroup of patients with cirrhosis. ⋯ In the light of advances in management of both cirrhosis and septic shock, survival of such patients substantially increased over recent years. The stage of the underlying liver disease and the related therapeutic options should be included in the decision-making process for ICU admission.
-
Editorial Comment
The gut-brain axis in the critically ill: Is glucagon-like peptide-1 protective in neurocritical care?
Enteral nutrient is a potent glucagon-like peptide-1 (GLP-1) secretagogue. In vitro and animal studies indicate that GLP-1 has immune-modulatory and neuroprotective effects. To determine whether these immune-modulatory and neuroprotective effects of GLP-1 are beneficial in the critically ill, studies achieving pharmacological GLP-1 concentrations are warranted.