Critical care : the official journal of the Critical Care Forum
-
Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. ⋯ Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity.
-
Regulation of the cerebral circulation relies on the complex interplay between cardiovascular, respiratory, and neural physiology. In health, these physiologic systems act to maintain an adequate cerebral blood flow (CBF) through modulation of hydrodynamic parameters; the resistance of cerebral vessels, and the arterial, intracranial, and venous pressures. In critical illness, however, one or more of these parameters can be compromised, raising the possibility of disturbed CBF regulation and its pathophysiologic sequelae. ⋯ Importantly, this impairment is often associated with poor patient outcome. At present, assessment of the cerebral circulation is primarily used as a research tool to elucidate pathophysiology or prognosis. However, when combined with other physiologic signals and online analytical techniques, cerebral circulation monitoring has the appealing potential to not only prognosticate patients, but also direct critical care management.
-
Review Meta Analysis
Efficacy and safety of proton pump inhibitors for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis of randomized trials.
The relative efficacy and safety of proton pump inhibitors (PPIs) compared to histamine-2-receptor antagonists (H2RAs) should guide their use in reducing bleeding risk in the critically ill. ⋯ PPIs were superior to H2RAs in preventing clinically important and overt GI bleeding, without significantly increasing the risk of pneumonia or mortality. Their impact on Clostridium difficile infection is yet to be determined.
-
This review article analyzes, through a nonsystematic approach, the pathophysiology of acute pancreatitis (AP) with a focus on the effects of thoracic epidural analgesia (TEA) on the disease. The benefit-risk balance is also discussed. AP has an overall mortality of 1 %, increasing to 30 % in its severe form. ⋯ Until now, only few clinical studies have been performed on the use of TEA during AP with few available data regarding the effect of TEA on the splanchnic perfusion. Increasing evidence suggests that TEA is a safe procedure and could appear as a new treatment approach for human AP, based on the significant benefits observed in animal studies and safety of use for human. Further clinical studies are required to confirm the clinical benefits observed in animal studies.
-
Information on regional ventilation distribution in mechanically ventilated patients is important to develop lung protective ventilation strategies. In the present prospective animal study, we introduce an electrical impedance tomography (EIT)-based method to classify lungs into normally ventilated, overinflated, tidally recruited/derecruited and recruited regions. ⋯ The proposed novel EIT-based method provides information on overinflation, recruitment and cyclic alveolar collapse at the bedside, which may improve the ventilation strategies used.