Critical care : the official journal of the Critical Care Forum
-
Chemokine (C-X3-C motif) receptor 1 (CX3CR1) was identified as the most differentially expressed gene between survivors and non-survivors in two independent cohorts of septic shock patients and was proposed as a marker of sepsis-induced immunosuppression. Whether such a biomarker is associated with mortality in the heterogeneous group of critically ill patients is unknown. The primary objective of this study was to evaluate the association between CX3CR1 messenger RNA (mRNA) expression and mortality in intensive care unit (ICU) patients. The secondary objective was to evaluate similar endpoints in the subgroup of septic shock patients. ⋯ This study represents the largest evaluation of such an mRNA marker in a heterogeneous cohort of severely injured patients. Our results show that decreased CX3CR1 mRNA expression is associated with increased mortality in ICU patients. This suggests a link between injury-induced immunosuppression and mortality in critically ill patients. In this context, the monitoring of such a host response molecular biomarker could prove very helpful for the identification of patients at high risk of death in the ICU.
-
Venovenous extracorporeal membrane oxygenation (vv-ECMO) has been classically employed as a rescue therapy for patients with respiratory failure not treatable with conventional mechanical ventilation alone. In recent years, however, the timing of ECMO initiation has been readdressed and ECMO is often started earlier in the time course of respiratory failure. ⋯ However, the complexity of the patient-ECMO interactions, the difficulties related to respiratory monitoring, and the management of an awake patient on extracorporeal support together pose a major challenge for the intensive care unit staff. Here, we review the use of vv-ECMO in awake, spontaneously breathing patients with respiratory failure, highlighting the pros and cons of this approach, analyzing the pathophysiology of patient-ECMO interactions, detailing some of the technical aspects, and summarizing the initial clinical experience gained over the past years.
-
We urgently need new therapies to improve outcomes after cardiac arrest. Initial studies typically target surrogate endpoints, and these studies help to inform subsequent larger trials that are powered to measure more patient-orientated clinical outcomes such as survival. The competing risk of death and premature assessment of neurological prognosis pose significant challenges to measuring these surrogate endpoints after cardiac arrest.
-
High-quality cardiopulmonary resuscitation (CPR) has been shown to improve survival outcomes after cardiac arrest. The current standard in studies evaluating CPR quality is to measure CPR process measures-for example, chest compression rate, depth, and fraction. Published studies evaluating CPR feedback devices have yielded mixed results. Newer approaches that seek to optimize CPR by measuring physiological endpoints during the resuscitation may lead to individualized patient care and improved patient outcomes.
-
Mechanical circulatory assist devices are now commonly used in the treatment of severe heart failure as bridges to cardiac transplant, as destination therapy for patients who are not transplant candidates, and as bridges to recovery and "decision-making". These devices, which can be used to support the left or right ventricles or both, restore circulation to the tissues, thereby improving organ function. Left ventricular assist devices (LVADs) are the most common support devices. ⋯ Although most patients have LVADs, some may have biventricular support devices or total artificial hearts. Involving a team of cardiac surgeons, perfusion experts, and heart-failure physicians, as well as ED and ICU physicians and nurses, is critical for managing treatment for these patients and for successful outcomes. This review is designed for critical care providers who may be the first to see these patients in the ED or ICU.