Critical care : the official journal of the Critical Care Forum
-
Hyperoxia is common practice in the acute management of circulatory shock, and observational studies report that it is present in more than 50 % of mechanically ventilated patients during the first 24 h after intensive care unit (ICU) admission. On the other hand, "oxygen toxicity" due to the increased formation of reactive oxygen species limits its use due to serious deleterious side effects. However, formation of reactive oxygen species to boost bacterial killing is one of the body's anti-microbial auto-defense mechanisms and, hence, O2 has been referred to as an antibiotic. ⋯ However, there is ample evidence that long-term exposure to hyperoxia impaired bacterial phagocytosis and thereby aggravated both bacterial burden and dissemination. Moreover, a recent retrospective study identified the number of days with hyperoxia, defined as a PaO2 > 120 mmHg only, as an independent risk factor of ventilator-associated pneumonia in patients needing mechanical ventilation for more than 48 h. Since so far the optimal oxygenation target is unknown for ICU patients, "conservative" O2 therapy represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
-
Acute respiratory failure (ARF) is a leading indication for performing critical care ultrasonography (CCUS) which, in these patients, combines critical care echocardiography (CCE) and chest ultrasonography. CCE is ideally suited to guide the diagnostic work-up in patients presenting with ARF since it allows the assessment of left ventricular filling pressure and pulmonary artery pressure, and the identification of a potential underlying cardiopathy. In addition, CCE precisely depicts the consequences of pulmonary vascular lesions on right ventricular function and helps in adjusting the ventilator settings in patients sustaining moderate-to-severe acute respiratory distress syndrome. ⋯ The major limitation of lung ultrasonography is that it is currently based on a qualitative approach in the absence of standardized quantification parameters. CCE combined with chest ultrasonography rapidly provides highly relevant information in patients sustaining ARF. A pragmatic strategy based on the serial use of CCUS for the management of patients presenting with ARF of various origins is detailed in the present manuscript.
-
Point-of-care ultrasonography (POCUS) is a useful imaging technique for the emergency medicine (EM) physician. Because of its growing use in EM, this article will summarize the historical development, the scope of practice, and some evidence supporting the current applications of POCUS in the adult emergency department. ⋯ Some applications of POCUS unique to the emergency department include abdominal ultrasonography of the right upper quadrant and appendix, obstetric, testicular, soft tissue/musculoskeletal, and ocular ultrasonography. Ultrasonography has become an integral part of EM over the past two decades, and it is an important skill which positively influences patient outcomes.
-
Intolerance to enteral nutrition is common in critically ill adults, and may result in significant morbidity including ileus, abdominal distension, vomiting and potential aspiration events. Prokinetic agents are prescribed to improve gastric emptying. However, the efficacy and safety of these agents in critically ill patients is not well-defined. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy and safety of prokinetic agents in critically ill patients. ⋯ There is moderate-quality evidence that prokinetic agents reduce feeding intolerance in critically ill patients compared to placebo or no intervention. However, the impact on other clinical outcomes such as pneumonia, mortality, and ICU length of stay is unclear.
-
Expert systems can help alleviate problems related to the shortage of human resources in critical care, offering expert advice in complex situations. Expert systems use contextual information to provide advice to staff. In mechanical ventilation, it is crucial for an expert system to be able to determine the ventilatory mode in use. Different manufacturers have assigned different names to similar or even identical ventilatory modes so an expert system should be able to detect the ventilatory mode. The aim of this study is to evaluate the accuracy of an algorithm to detect the ventilatory mode in use. ⋯ The computerized algorithm can reliably identify ventilatory mode.