Critical care : the official journal of the Critical Care Forum
-
Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used in the management of cardiopulmonary failure that is refractory to conventional medical and surgical therapies. The major problems clinicians face are bleeding and clotting, which can occur simultaneously. To discern the impact of pulmonary injury and ECMO on the host's haemostatic response, we developed an ovine model of smoke-induced acute lung injury (S-ALI) and ECMO. The aims of this study were to determine if the ECMO circuit itself altered haemostasis and if this was augmented in a host with pulmonary injury. ⋯ The introduction of an ECMO circuit itself increases collagen-induced platelet aggregation, decreases FVIII and von Willebrand factor, and induces a transient decrease in fibrinogen levels and function in the first 24 h. These changes to haemostasis are amplified when a host with a pre-existing pulmonary injury is placed on ECMO. Because patients are often on ECMO for extended periods, longer-duration studies are required to characterise ECMO-induced haemostatic changes over the long term. The utility of point-of-care tests for guiding haemostatic management during ECMO also warrants further exploration.
-
Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status. ⋯ Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.
-
Randomized Controlled Trial
Inhaled AP301 for treatment of pulmonary edema in mechanically ventilated patients with acute respiratory distress syndrome: a phase IIa randomized placebo-controlled trial.
High-permeability pulmonary edema is a hallmark of acute respiratory distress syndrome (ARDS) and is frequently accompanied by impaired alveolar fluid clearance (AFC). AP301 enhances AFC by activating epithelial sodium channels (ENaCs) on alveolar epithelial cells, and we investigated its effect on extravascular lung water index (EVLWI) in mechanically ventilated patients with ARDS. ⋯ There was no difference in mean baseline-adjusted EVLWI between the AP301 and placebo group. An exploratory post-hoc subgroup analysis indicated reduced EVLWI in patients with SOFA scores ≥11 receiving AP301. These results suggest further confirmation in future clinical trials of inhaled AP301 for treatment of pulmonary edema in patients with ARDS.
-
Randomized Controlled Trial Multicenter Study
Prolonged acute care and post-acute care admission and recovery of physical function in survivors of acute respiratory failure: a secondary analysis of a randomized controlled trial.
The proportion of survivors of acute respiratory failure is growing; yet, many do not regain full function and require prolonged admission in an acute or post-acute care facility. Little is known about their trajectory of functional recovery. We sought to determine whether prolonged admission influenced the trajectory of physical function recovery and whether patient age modified the recuperation rate. ⋯ Patients who require prolonged admission after acute respiratory failure have significantly lower physical functional performance than patients who return home. However, the rates of physical functional recovery between the two groups do not differ. The majority of survivors do not recover sufficiently to achieve functional independence by 6 months. Older age negatively influences the trajectory of functional recovery.