Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: a double-blinded, randomised, sham-controlled pilot study.
For every day a person is dependent on mechanical ventilation, respiratory and cardiac complications increase, quality of life decreases and costs increase by > $USD 1500. Interventions that improve respiratory muscle function during mechanical ventilation can reduce ventilation duration. The aim of this pilot study was to assess the feasibility of employing an abdominal functional electrical stimulation (abdominal FES) training program with critically ill mechanically ventilated patients. We also investigated the effect of abdominal FES on respiratory muscle atrophy, mechanical ventilation duration and intensive care unit (ICU) length of stay. ⋯ Our compliance rates demonstrate the feasibility of using abdominal FES with critically ill mechanically ventilated patients. While abdominal FES did not lead to differences in abdominal muscle or diaphragm thickness, it may be an effective method to reduce ventilation duration and ICU length of stay in this patient group. A fully powered study into this effect is warranted.
-
Observational Study
Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis.
The endothelial glycocalyx (eGC) covers the luminal surface of the vascular endothelium and plays an important protective role in systemic inflammatory states and particularly in sepsis. Its breakdown leads to capillary leak and organ dysfunction. Moreover, sepsis-induced alterations of sublingual microcirculation are associated with a worse clinical outcome. The present study was performed to investigate the associations between eGC dimensions and established parameters of microcirculation dysfunction in sepsis. ⋯ Our findings suggest that eGC damage can occur independently of microcirculatory impairment as measured by classical consensus parameters. Further studies in critically ill patients are needed to unravel the relationship of glycocalyx damage and microvascular impairment, as well as their prognostic and therapeutic importance in sepsis.
-
Intravenous fluids, an essential component of sepsis resuscitation, may paradoxically worsen outcomes by exacerbating endothelial injury. Preclinical models suggest that fluid resuscitation degrades the endothelial glycocalyx, a heparan sulfate-enriched structure necessary for vascular homeostasis. We hypothesized that endothelial glycocalyx degradation is associated with the volume of intravenous fluids administered during early sepsis resuscitation. ⋯ Glycocalyx degradation occurs in sepsis and septic shock and is associated with in-hospital mortality. The volume of intravenous fluids administered during sepsis resuscitation is independently associated with the degree of glycocalyx degradation. These findings suggest a potential mechanism by which intravenous fluid resuscitation strategies may induce iatrogenic endothelial injury.
-
Influenza virus affects the respiratory tract by direct viral infection or by damage from the immune system response. In humans, the respiratory epithelium is the only site where the hemagglutinin (HA) molecule is effectively cleaved, generating infectious virus particles. Virus transmission occurs through a susceptible individual's contact with aerosols or respiratory fomites from an infected individual. ⋯ Influenza A is the predominant viral etiology of acute respiratory distress syndrome (ARDS) in adults. Risk factors independently associated with ARDS are age between 36 and 55 years old, pregnancy, and obesity, while protective factors are female sex, influenza vaccination, and infections with Influenza A (H3N2) or Influenza B viruses. In the ICU, particularly during the winter season, influenza should be suspected not only in patients with typical symptoms and epidemiology, but also in patients with severe pneumonia, ARDS, sepsis with or without bacterial co-infection, as well as in patients with encephalitis, myocarditis, and rhabdomyolysis.
-
Observational Study
Feasibility of myocardial perfusion assessment with contrast echocardiography: can it improve recognition of significant coronary artery disease in the ICU?
Diagnosis of significant coronary artery disease (CAD) and acute coronary artery occlusion in ICU can be difficult, and an inappropriate intervention is potentially harmful. Myocardial contrast perfusion echo (MCPE) examines ultrasound contrast intensity replenishment curves in individual myocardial segments measuring peak contrast intensity and slope of return as an index of myocardial blood flow (units = intensity of ultrasound per second [dB/s]). MCPE could possibly serve as a triage tool to invasive angiography by estimating blood flow in the myocardium. We sought to assess feasibility in the critically ill and if MCPE could add incremental value to the clinical acumen in predicting significant CAD. ⋯ MCPE is feasible in the critically ill and shows better association with predicting significant CAD vs clinical acumen alone. MCPE adds incremental value to initial assessment of the presence of significant CAD which may help guide those who require urgent angiography.