Critical care : the official journal of the Critical Care Forum
-
Medications used for supportive care or prophylaxis constitute a significant portion of drug utilization in the intensive care unit. Evidence-based guidelines are available for many aspects of supportive care but drug doses listed are typically for patients with normal body habitus and not morbid obesity. Failure to account for the pharmacokinetic changes that occur with obesity can lead to an incorrect dose and treatment failure or toxicity. ⋯ For medications used for hemodynamic support, a similar strategy can be used as in non-obese patients. Similarly, medications for stress ulcer prophylaxis do not need to be adjusted. Anticoagulants for venous thromboembolism prophylaxis, on the other hand, require an individualized approach where higher doses are necessary.
-
To study variation in, and clinical impact of high Therapy Intensity Level (TIL) treatments for elevated intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across European Intensive Care Units (ICUs). ⋯ Substantial variation was found in the use of highly intensive ICP-lowering treatments across European ICUs and a stepwise escalation strategy from lower to higher intensity level therapy is often lacking. Further research is necessary to study the impact of high therapy intensity treatments.
-
Pediatric (PARDS) and neonatal (NARDS) acute respiratory distress syndrome have different age-specific characteristics and definitions. Trials on surfactant for ARDS in children and neonates have been performed well before the PARDS and NARDS definitions and yielded conflicting results. This is mainly due to heterogeneity in study design reflecting historic lack of pathobiology knowledge. ⋯ Explanatory should be preferred over pragmatic design for future trials on PARDS and NARDS. 4. Different clinical outcomes need to be chosen for PARDS and NARDS, according to the trial phase and design, trigger type, severity class and/or surfactant treatment policy. We advocate for further well-designed preclinical and clinical studies to investigate the use of surfactant for PARDS and NARDS following these principles.
-
Capillary leakage is a key contributor to the pathological host response to infections. The underlying mechanisms remain incompletely understood, and the role of microRNAs (MIR) has not been investigated in detail. We hypothesized that specific MIRs might be regulated directly in the endothelium thereby contributing to vascular leakage. ⋯ We found that MIR155 is upregulated in the endothelium in mouse and men as part of a systemic inflammatory response and might contribute to the pathophysiology of vascular leakage in a Claudin-1-dependent manner. Future studies have to clarify whether MIR155 could be a potential therapeutic target.