Critical care : the official journal of the Critical Care Forum
-
Meta Analysis
Effects of rapid fluid infusion on hemoglobin concentration: a systematic review and meta-analysis.
Rapid fluid administration may decrease hemoglobin concentration (Hb) by a diluting effect, which could limit the increase in oxygen delivery (DO2) expected with a positive response to fluid challenge in critically ill patients. Our aim was to quantify the decrease in Hb after rapid fluid administration. ⋯ Hb decreased consistently after rapid fluid administration with moderate certainty of evidence. This effect may limit the positive effects of fluid challenges on DO2 and thus on tissue oxygenation.
-
Multicenter Study
Dehydration is associated with production of organic osmolytes and predicts physical long-term symptoms after COVID-19: a multicenter cohort study.
We have previously shown that iatrogenic dehydration is associated with a shift to organic osmolyte production in the general ICU population. The aim of the present investigation was to determine the validity of the physiological response to dehydration known as aestivation and its relevance for long-term disease outcome in COVID-19. ⋯ Dehydration during acute COVID-19 infection causes an aestivation response that is associated with protein degradation and physical long-COVID.
-
Randomized Controlled Trial
Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial.
Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO2) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO2 with patients' outcome. ⋯ In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients.
-
Cell stress promotes degradation of mitochondria which release danger-associated molecular patterns that are catabolized to N-formylmethionine. We hypothesized that in critically ill adults, the response to N-formylmethionine is associated with increases in metabolomic shift-related metabolites and increases in 28-day mortality. ⋯ The results indicate that circulating N-formylmethionine promotes a metabolic shift with heightened mortality that involves incomplete mitochondrial fatty acid oxidation, increased branched chain amino acid metabolism, and activation of the pentose phosphate pathway.