Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Effect of high-flow oxygen versus T-piece ventilation strategies during spontaneous breathing trials on weaning failure among patients receiving mechanical ventilation: a randomized controlled trial.
A spontaneous breathing trial (SBT) is used to determine whether patients are ready for extubation, but the best method for choosing the SBT strategy remains controversial. We investigated the effect of high-flow oxygen versus T-piece ventilation strategies during SBT on rates of weaning failure among patients receiving mechanical ventilation. ⋯ Among patients receiving mechanical ventilation, high-flow oxygen SBT did not significantly reduce the risk of weaning failure compared with T-piece SBT. However, the study may have been underpowered to detect a clinically important treatment effect for the comparison of high-flow oxygen SBT versus T-piece SBT, and a higher percentage of patients with simple weaning and a lower weaning failure rate than expected should be considered when interpreting the findings. Clinical trial registration This trial was registered with ClinicalTrials.gov (number NCT03929328) on April 26, 2019.
-
Randomized Controlled Trial
Non-interventional follow-up versus fluid bolus in RESPONSE to oliguria in hemodynamically stable critically ill patients: a randomized controlled pilot trial.
Fluid bolus therapy is a common intervention to improve urine output. Data concerning the effect of a fluid bolus on oliguria originate mainly from observational studies and remain controversial regarding the actual benefit of such therapy. We compared the effect of a follow-up approach without fluid bolus to a 500 mL fluid bolus on urine output in hemodynamically stable critically ill patients with oliguria at least for 2 h (urine output < 0.5 mL/kg/h) in randomized setting. ⋯ Follow-up approach to oliguria compared to administering a fluid bolus of 500 mL crystalloid in oliguric patients improved urine output less frequently but lead to lower cumulative fluid balance. Trial registration clinical.
-
The relationship between indices of mechanical ventilation and pulmonary artery pressures remains ill-defined in ARDS. As our understanding of mechanical ventilation has progressed, there is now a greater appreciation of the impact of high driving pressures and mechanical power in perpetuating lung injury. However, the relationship between the newer derived indices of mechanical ventilation and pulmonary artery pressure is unclear. We performed a post hoc analysis of the Fluid and Catheters Treatment Trial (FACTT) trial to investigate the associations between mechanical ventilation indices in ARDS patients and the prevalence of pulmonary hypertension. This may help elucidate future clinical targets for more, right ventricular protective, mechanical ventilation strategies. ⋯ The associations identified between mPAP and mechanical ventilation variables in this analysis would suggest that classical ARDS lung protective strategies, including low tidal volume ventilation and permissive hypercapnia, may negatively impact the management of the subset of ARDS patients with associated right ventricular dysfunction or ACP. Additionally, respiratory rates above 17 cycles per minute show an incremental increase in mPAP. Therefore, increases in tidal volume (within the limitation of driving pressure < 18 cmH20) may represent a more right ventricular protective way to control CO2 and pH.