Critical care : the official journal of the Critical Care Forum
-
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
-
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
-
The profile of changes in airway driving pressure (dPaw) induced by positive-end expiratory pressure (PEEP) might aid for individualized protective ventilation. Our aim was to describe the dPaw versus PEEP curves behavior in ARDS from COVID-19 patients. ⋯ A PEEP adjustment procedure based on PEEP-induced changes in dPaw is feasible and may aid in individualized PEEP for protective ventilation. The PEEP required to minimize driving pressure was influenced by BMI and was low in the majority of patients.
-
Observational Study
Reversible skin microvascular hyporeactivity in patients with immune-mediated thrombocytopenic thrombotic purpura.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare disease characterized by arteriolar and capillary microthrombosis precipitating organ failure. However, the contribution of endothelial dysfunction on impaired microvascular blood flow in iTTP patients has been poorly explored. This pilot observational study aimed to explore endothelial-mediated vasoreactivity in iTTP patients at admission and its changes after plasma exchange therapy (PE). ⋯ We highlighted a marked yet reversible skin endothelium-mediated microvascular hyporeactivity in iTTP patients that could participate in organ injury pathophysiology.
-
Randomized Controlled Trial
Neurological and respiratory effects of lung protective ventilation in acute brain injury patients without lung injury: brain vent, a single centre randomized interventional study.
Lung protective ventilation (LPV) comprising low tidal volume (VT) and high positive end-expiratory pressure (PEEP) may compromise cerebral perfusion in acute brain injury (ABI). In patients with ABI, we investigated whether LPV is associated with increased intracranial pressure (ICP) and/or deranged cerebral autoregulation (CA), brain compensatory reserve and oxygenation. ⋯ The present study found that most patients did not experience any adverse effects of LPV, neither on ICP nor CA. However, in almost a quarter of patients, the ICP rose above the safety limit for interrupting the interventions. Baseline ICP, brain compensatory reserve, and mechanical power can predict a potentially deleterious effect of LPV and can be used to personalize ventilator settings. Trial registration NCT03278769 . Registered September 12, 2017.