Critical care : the official journal of the Critical Care Forum
-
Observational Study
Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model.
Identifying patterns within ICU medication regimens may help artificial intelligence algorithms to better predict patient outcomes; however, machine learning methods incorporating medications require further development, including standardized terminology. The Common Data Model for Intensive Care Unit (ICU) Medications (CDM-ICURx) may provide important infrastructure to clinicians and researchers to support artificial intelligence analysis of medication-related outcomes and healthcare costs. Using an unsupervised cluster analysis approach in combination with this common data model, the objective of this evaluation was to identify novel patterns of medication clusters (termed 'pharmacophenotypes') correlated with ICU adverse events (e.g., fluid overload) and patient-centered outcomes (e.g., mortality). ⋯ The results of this evaluation suggest that patterns among patient clusters and medication regimens may be observed using empiric methods of unsupervised machine learning in combination with a common data model. These results have potential because while phenotyping approaches have been used to classify heterogenous syndromes in critical illness to better define treatment response, the entire medication administration record has not been incorporated in those analyses. Applying knowledge of these patterns at the bedside requires further algorithm development and clinical application but may have the future potential to be leveraged in guiding medication-related decision making to improve treatment outcomes.