Critical care : the official journal of the Critical Care Forum
-
Cognitive impairment is common following out-of-hospital cardiac arrest (OHCA), but the nature of the impairment is poorly understood. Our objective was to describe cognitive impairment in OHCA survivors, with the hypothesis that OHCA survivors would perform significantly worse on neuropsychological tests of cognition than controls with acute myocardial infarction (MI). Another aim was to investigate the relationship between cognitive performance and the associated factors of emotional problems, fatigue, insomnia, and cardiovascular risk factors following OHCA. ⋯ In our study population, cognitive impairment was generally mild following OHCA. OHCA survivors performed worse than MI controls in 3 of 6 domains. These results support current guidelines that a post-OHCA follow-up service should screen for cognitive impairment, emotional problems, and fatigue.
-
Haloperidol is frequently used in critically ill patients with delirium, but evidence for its effects has been sparse and inconclusive. By including recent trials, we updated a systematic review assessing effects of haloperidol on mortality and serious adverse events in critically ill patients with delirium. ⋯ Haloperidol may reduce mortality and likely result in little to no change in the occurrence of SAEs/SARs compared with placebo in critically ill patients with delirium. However, the results were not statistically significant and more trial data are needed to provide higher certainty for the effects of haloperidol in these patients.
-
Mechanical ventilation is applied to unload the respiratory muscles, but knowledge about transpulmonary driving pressure (ΔPL) is important to minimize lung injury. We propose a method to estimate ΔPL during neurally synchronized assisted ventilation, with a simple intervention of lowering the assist for one breath ("lower assist maneuver", LAM). ⋯ During synchronized mechanical ventilation, a LAM breath allows for estimations of transpulmonary driving pressure, without measuring PES, and follows a mathematical transfer function to describe respiratory muscle unloading during synchronized assist.