Critical care : the official journal of the Critical Care Forum
-
Multicenter Study Observational Study
Antibiotic definitive treatment in ventilator associated pneumonia caused by AmpC-producing Enterobacterales in critically ill patients: a prospective multicenter observational study.
Ventilator associated pneumonia (VAP) due to wild-type AmpC-producing Enterobacterales (wtAE) is frequent in intensive care unit (ICU) patients. Despite a low level of evidence, definitive antimicrobial therapy (AMT) with third generation cephalosporins (3GCs) or piperacillin is discouraged. ⋯ Choice of definitive antimicrobial therapy was not associated with treatment success at day 7. However, recurrence of pneumonia at day-28 was higher in patients treated with third generation cephalosporins with no differences in mortality or mechanical ventilation duration.
-
Randomized Controlled Trial
Blood volume and hemodynamics during treatment of major hemorrhage with Ringer solution, 5% albumin, and 20% albumin: a single-center randomized controlled trial.
Volume replacement with crystalloid fluid is the conventional treatment of hemorrhage. We challenged whether a standardized amount of 5% or 20% albumin could be a viable option to maintain the blood volume during surgery associated with major hemorrhage. Therefore, the aim of this study was to quantify and compare the plasma volume expansion properties of 5% albumin, 20% albumin, and Ringer-lactate, when infused during major surgery. ⋯ The power to expand the plasma volume was 4 and almost 12 times greater for 5% albumin and 20% albumin than for Ringer-lactate, and the effect was sustained over 5 h. The clinical efficacy of albumin during major hemorrhage was quite similar to previous studies with no hemorrhage.
-
The optimal feeding strategy for critically ill patients is still debated, but feeding must be adapted to individual patient needs. Critically ill patients are at risk of muscle catabolism, leading to loss of muscle mass and its consequent clinical impacts. Timing of introduction of feeding and protein targets have been explored in recent trials. ⋯ There is evidence from other settings that high-dose oral EPA + DHA increases muscle protein synthesis, decreases muscle protein breakdown, and maintains muscle mass. SPMs may be responsible for some of these effects, especially upon muscle protein breakdown. Given these findings, provision of EPA and DHA as part of medical nutritional therapy in critically ill patients at risk of loss of muscle mass seems to be a strategy to prevent the persistence of inflammation and the related anabolic resistance and muscle loss.