Critical care : the official journal of the Critical Care Forum
-
Discrepancies of 5-24% between superior vena cava oxygen saturation (ScvO2) and mixed venous oxygen saturation (SvO2) have been reported in patients with severe heart failure. Thenar muscle tissue oxygenation (StO2) measured with near-infrared spectroscopy (NIRS) during arterial occlusion testing decreases slower in sepsis/septic shock patients (lower StO2 deoxygenation rate). The StO2 deoxygenation rate is influenced by dobutamine. The aim of this study was to determine the relationship between the StO2 deoxygenation rate and the ScvO2-SvO2 discrepancy in patients with severe left heart failure and additional sepsis/septic shock treated with or without dobutamine. ⋯ In patients with severe heart failure with additional severe sepsis/septic shock the ScvO2-SvO2 discrepancy presents a clinical problem. In these patients the skeletal muscle StO2 deoxygenation rate is inversely proportional to the difference between ScvO2 and SvO2; dobutamine does not influence this relationship. When using ScvO2 as a treatment goal, the NIRS measurement may prove to be a useful non-invasive diagnostic test to uncover patients with a normal ScvO2 but potentially an abnormally low SvO2.
-
Comparative Study
Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats.
Hydrogen sulfide (H2S) has been shown to improve survival in rodent models of lethal hemorrhage. Conversely, other authors have reported that inhibition of endogenous H2S production improves hemodynamics and reduces organ injury after hemorrhagic shock. Since all of these data originate from unresuscitated models and/or the use of a pre-treatment design, we therefore tested the hypothesis that the H2S donor, sodium hydrosulfide (NaHS), may improve hemodynamics in resuscitated hemorrhagic shock and attenuate oxidative and nitrosative stresses. ⋯ NaHS is protective against the effects of ischemia reperfusion induced by controlled hemorrhage in rats. NaHS also improves hemodynamics in the early resuscitation phase after hemorrhagic shock, most likely as a result of attenuated oxidative stress. The use of NaHS hence appears promising in limiting the consequences of ischemia reperfusion (IR).
-
Statins reduce risk of cardiovascular events and have beneficial pleiotropic effects; both may reduce mortality in critically ill patients. We examined whether statin use was associated with risk of death in general intensive care unit (ICU) patients. ⋯ Preadmission statin use was associated with reduced risk of death following intensive care. The associations seen could be a pharmacological effect of statins, but unmeasured differences in characteristics of statin users and non-users cannot be entirely ruled out.
-
Fever is a common occurrence in the intensive care unit, and pharmacologic approaches are limited, particularly in patients unable to tolerate enteral medications. Although a study by Morris and colleagues in the previous issue of Critical Care suggests that intravenous ibuprofen is safe and effective in critically ill patients, the study is small and the drug was given over only a 24-hour period. Additional studies will need to be performed to demonstrate the safety and efficacy of intravenous ibuprofen in critically ill patients.
-
Arterial pressure optimization in septic shock is a critical, yet poorly understood component of resuscitation. New data suggest that, during the routine management of patients with severe sepsis, there is no association between mean arterial pressure achieved and outcome as long as the mean arterial pressure is maintained at or above 70 mmHg. Although these data add important new evidence to our understanding of arterial pressure management, there are still many unanswered questions upon which future investigations should focus.