Critical care : the official journal of the Critical Care Forum
-
Triple-H therapy and its separate components (hypervolemia, hemodilution, and hypertension) aim to increase cerebral perfusion in subarachnoid haemorrhage (SAH) patients with delayed cerebral ischemia. We systematically reviewed the literature on the effect of triple-H components on cerebral perfusion in SAH patients. ⋯ There is no good evidence from controlled studies for a positive effect of triple-H or its separate components on CBF in SAH patients. In uncontrolled studies, hypertension seems to be more effective in increasing CBF than hemodilution or hypervolemia.
-
It has been hypothesized that hyperoncotic colloids might contribute to acute kidney injury (AKI). However, the validity of this hypothesis remains unclear. ⋯ This meta-analysis does not support the hypothesis that hyperoncotic colloid solutions per se injure the kidney. Renal effects appear instead to be colloid-specific, with albumin displaying renoprotection and HES showing nephrotoxicity.
-
Septic shock causes unpredictable cardiovascular responses through adrenoreceptor-mediated changes in cardiac function and vascular responsiveness. The use of norepinephrine should be regarded as neurohormonal augmentation therapy to defend decompensating haemodynamic function rather than as a rescue therapy to treat shock. Recent trials represent a perceptible change in clinical practice to preferentially use norepinephrine early in resuscitation to defend the mean arterial pressure and to use norepinephrine as a neurohormone rather than as a vasopressor.
-
Glycemic control aiming at normoglycemia, frequently referred to as 'strict glycemic control' (SGC), decreased mortality and morbidity of adult critically ill patients in two randomized controlled trials (RCTs). Five successive RCTs, however, failed to show benefit of SGC with one trial even reporting an unexpected higher mortality. Consequently, enthusiasm for the implementation of SGC has declined, hampering translation of SGC into daily ICU practice. ⋯ There are several alternative explanations for why the five negative RCTs showed no beneficial effects of SGC, apart from the possibility that SGC may indeed not benefit ICU patients. These include, but are not restricted to, variability in the performance of SGC, differences among trial designs, changes in standard of care, differences in timing (that is, initiation) of SGC, and the convergence between the intervention groups and control groups with respect to achieved blood glucose levels in the successive RCTs. Additional factors that may hamper translation of SGC into daily ICU practice include the feared risk of severe hypoglycemia, additional labor associated with SGC, and uncertainties about who the primarily responsible caregiver should be for the implementation of SGC.
-
Randomized Controlled Trial Comparative Study
Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial.
Prolonged mechanical ventilation has the potential to aggravate or initiate pulmonary inflammation and cause lung damage through fibrin deposition. Heparin may reduce pulmonary inflammation and fibrin deposition. We therefore assessed whether nebulized heparin improved lung function in patients expected to require prolonged mechanical ventilation. ⋯ Nebulized heparin was associated with fewer days of mechanical ventilation in critically ill patients expected to require prolonged mechanical ventilation. Further trials are required to confirm these findings.