Critical care : the official journal of the Critical Care Forum
-
Triple-H therapy and its separate components (hypervolemia, hemodilution, and hypertension) aim to increase cerebral perfusion in subarachnoid haemorrhage (SAH) patients with delayed cerebral ischemia. We systematically reviewed the literature on the effect of triple-H components on cerebral perfusion in SAH patients. ⋯ There is no good evidence from controlled studies for a positive effect of triple-H or its separate components on CBF in SAH patients. In uncontrolled studies, hypertension seems to be more effective in increasing CBF than hemodilution or hypervolemia.
-
Multicenter Study Comparative Study Clinical Trial
Pre-hospital cooling of patients following cardiac arrest is effective using even low volumes of cold saline.
Pre-hospital induction of therapeutic mild hypothermia (TH) may reduce post-cardiac arrest brain injury in patients resuscitated from out-of-hospital cardiac arrest. Most often, it is induced by a rapid intravenous administration of as much as 30 ml/kg of cold crystalloids. We decided to assess the pre-hospital cooling effectivity of this approach by using a target dose of 15-20 ml/kg of 4°C cold normal saline in the setting of the physician-staffed Emergency Medical Service. The safety and impact on the clinical outcome have also been analyzed. ⋯ Pre-hospital induction of TH by the rapid intravenous administration of cold normal saline has been shown to be efficient even with a lower dose of coolant than reported in previous studies. This dose can be associated with a favorable impact on circulatory stability early after the return of spontaneous circulation and, when coupled with in-hospital continuation of cooling, can potentially improve the prognosis of patients.
-
Randomized Controlled Trial Multicenter Study
Computed tomography assessment of exogenous surfactant-induced lung reaeration in patients with acute lung injury.
Previous randomized trials failed to demonstrate a decrease in mortality of patients with acute lung injury treated by exogenous surfactant. The aim of this prospective randomized study was to evaluate the effects of exogenous porcine-derived surfactant on pulmonary reaeration and lung tissue in patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS). ⋯ Intratracheal surfactant replacement induces a significant and prolonged lung reaeration. It also induces a significant increase in lung tissue in normally aerated lung areas, whose mechanisms remain to be elucidated.
-
Multicenter Study Comparative Study
Cost and mortality prediction using polymerase chain reaction pathogen detection in sepsis: evidence from three observational trials.
Delays in adequate antimicrobial treatment contribute to high cost and mortality in sepsis. Polymerase chain reaction (PCR) assays are used alongside conventional cultures to accelerate the identification of microorganisms. We analyze the impact on medical outcomes and healthcare costs if improved adequacy of antimicrobial therapy is achieved by providing immediate coverage after positive PCR reports. ⋯ Rapid PCR identification of microorganisms has the potential to become a cost-effective component for managing sepsis. The prediction model tested with data from three observational trials should be utilized as a framework to deepen insights when integrating more complementary data associated with utilization of molecular assays in the management of sepsis.
-
Glycemic control aiming at normoglycemia, frequently referred to as 'strict glycemic control' (SGC), decreased mortality and morbidity of adult critically ill patients in two randomized controlled trials (RCTs). Five successive RCTs, however, failed to show benefit of SGC with one trial even reporting an unexpected higher mortality. Consequently, enthusiasm for the implementation of SGC has declined, hampering translation of SGC into daily ICU practice. ⋯ There are several alternative explanations for why the five negative RCTs showed no beneficial effects of SGC, apart from the possibility that SGC may indeed not benefit ICU patients. These include, but are not restricted to, variability in the performance of SGC, differences among trial designs, changes in standard of care, differences in timing (that is, initiation) of SGC, and the convergence between the intervention groups and control groups with respect to achieved blood glucose levels in the successive RCTs. Additional factors that may hamper translation of SGC into daily ICU practice include the feared risk of severe hypoglycemia, additional labor associated with SGC, and uncertainties about who the primarily responsible caregiver should be for the implementation of SGC.