Critical care : the official journal of the Critical Care Forum
-
Dead space negatively influences carbon dioxide (CO(2)) elimination, particularly at high respiratory rates (RR) used at low tidal volume ventilation in acute respiratory distress syndrome (ARDS). Aspiration of dead space (ASPIDS), a known method for dead space reduction, comprises two mechanisms activated during late expiration: aspiration of gas from the tip of the tracheal tube and gas injection through the inspiratory line - circuit flushing. The objective was to study the efficiency of circuit flushing alone and of ASPIDS at wide combinations of RR and tidal volume (V(T)) in anaesthetized pigs. The hypothesis was tested that circuit flushing and ASPIDS are particularly efficient at high RR. ⋯ At high RR, re-breathing of CO(2) from the y-piece and tubing becomes important. Circuit flushing and ASPIDS, which significantly reduce tubing dead space and PaCO2, merit further clinical studies.
-
Many advances have been made in the understanding and treatment of burns. Advances in burn surgery and critical care have decreased mortality and morbidity. ⋯ A lot of burn deaths may be preventable with better airway management and a more precise and adequate volume management, but the leading cause of death in patients suffering from severe burns, which has to be faced, is sepsis. Sepsis due to multidrug-resistant organisms will continue to impede efforts to increase survival, and new strategies that go beyond the surgical and clinical techniques, which are already implemented, have to be developed in order to fight these organisms and their related complications.
-
The aims of our study were to evaluate the impact of increased intra-abdominal pressure (IAP) on central nervous system (CNS) cytokines (Interleukin 6 and tumor necrosis factor), lactate and perfusion pressures, testing the hypothesis that intra-abdominal hypertension (IAH) may possibly lead to CNS ischemia. ⋯ IAH resulted in a decrease of CPP and SPP lower than 60 mmHg and an increase of all ischemic mediators, indicating CNS ischemia; on the other hand, restoration of perfusion pressures above this threshold decreased all ischemic indicators, irrespective of the level of IAH.
-
Comment
Inhaled activated protein C: a new therapy for the prevention of ventilator-induced lung injury?
Systemic administration of activated protein C (APC) has been shown to reduce pulmonary inflammation in preclinical models of acute lung injury. However, there is only limited information concerning the effects of inhaled APC in modulating the severity of pulmonary inflammation. In a study reported in this issue of Critical Care, Maniatis and colleagues show that pretreatment of mice with inhaled APC is protective against ventilator-induced lung injury. While the mechanisms responsible for this effect require additional elucidation, inhaled APC appears to be a potentially useful intervention in diminishing the severity of ventilator-induced lung injury and other forms of acute lung injury.