Critical care : the official journal of the Critical Care Forum
-
Haemodialysis has direct and indirect effects on skin and muscle microcirculatory regulation that are severe enough to worsen tolerance to physical exercise and muscle asthenia in patients undergoing dialysis, thus compromising patients' quality of life and increasing the risk of mortality. In diabetes these circumstances are further complicated, leading to an approximately sixfold increase in the incidence of critical limb ischaemia and amputation. Our aim in this study was to investigate in vivo whether haemodialysis induces major changes in skeletal muscle oxygenation and blood flow, microvascular compliance and tissue metabolic rate in patients with and without diabetes. ⋯ Our NIRS findings suggest that haemodialysis in subjects at rest brings about major changes in skeletal muscle oxygenation, blood flow, microvascular compliance and tissue metabolic rate. These changes differ in patients with and without diabetes. In all patients haemodialysis induces changes in tissue haemoglobin concentrations and microvascular compliance, whereas in patients with diabetes it alters tissue blood flow, tissue oxygenation (CtO2, [HbO2]) and the metabolic rate (mVO2). In these patients the mVO2 is correlated to the blood supply. The effects of haemodialysis on cell damage remain to be clarified. The absence of StO2 changes is probably linked to an opposite [HbO2] and mVO2 pattern.
-
Adverse outcomes following clinical deterioration in children admitted to hospital wards is frequently preventable. Identification of children for referral to critical care experts remains problematic. Our objective was to develop and validate a simple bedside score to quantify severity of illness in hospitalized children. ⋯ We developed and performed the initial validation of the Bedside PEWS score. This 7-item score can quantify severity of illness in hospitalized children and identify critically ill children with at least one hours notice. Prospective validation in other populations is required before clinical application.
-
Control of blood glucose (BG) in critically ill patients is considered important, but is difficult to achieve, and often associated with increased risk of hypoglycemia. We examined the use of a computerized insulin dosing algorithm to manage hyperglycemia with particular attention to frequency and conditions surrounding hypoglycemic events. ⋯ Glycemic control to a lower glucose target range can be achieved using a computerized insulin dosing protocol. With particular attention to timely measurement and adjustment of insulin doses the risk of hypoglycemia experienced can be minimized.
-
Indexes predicting weaning outcome are frequently inaccurate. We developed a new integrative weaning index aimed at improving the accuracy of the traditional indexes. ⋯ IWI was the best predictive performance index of weaning outcome and can be used in the intensive care unit setting.
-
The current debate about the side effects of induction agents, e.g. possible adrenal suppression through etomidate, emphasizes the relevance of choosing the correct induction agent in septic patients. However, cardiovascular depression is still the most prominent adverse effect of these agents, and might be especially hazardous in septic patients presenting with a biventricular cardiac dysfunction--or so-called septic cardiomyopathy. Therefore, we tested the dose-response direct cardiac effects of clinically available induction agents in an isolated septic rat heart model. ⋯ Overall, this study demonstrates that these tested drugs indeed have differential direct cardiac effects in the isolated septic heart. Propofol showed the most pronounced adverse direct cardiac effects. In contrast, S(+)ketamine showed cardiovascular stability over a wide range of concentrations, and might therefore be a beneficial alternative to etomidate.