Critical care : the official journal of the Critical Care Forum
-
Our understanding of septic acute kidney injury (AKI) remains incomplete. A fundamental step is the use of animal models designed to meet the criteria of human sepsis. Therefore, we dynamically assessed renal haemodynamic, microvascular and metabolic responses to, and ultrastructural sequelae of, sepsis in a porcine model of faecal peritonitis-induced progressive hyperdynamic sepsis. ⋯ The results of this experimental study argue against the concept of renal vasoconstriction and tubular necrosis as physiological and morphological substrates of early septic AKI. Renal venous congestion might be a hidden and clinically unrecognised contributor to the development of kidney dysfunction.
-
Using recruitment manoeuvres in acute lung injury remains a controversial issue because no convincing outcome data support their general use, although many physiological studies have demonstrated beneficial effects on lung compliance, end-expiratory lung volume and gas exchange. One of the reasons why physiologically meaningful observations do not translate into clear clinical benefit could be the heterogeneity of the studied patient population. ⋯ We do not currently have any simple tool that may readily be applied at the bedside to assess the recruitment potential in an individual patient, which would be a sine qua non for identifying a homogeneous population in a recruitment study. Therefore, the method presented by Jacob Koefeld-Nielsen and colleagues in the previous issue of Critical Care provides us with a simple method that could be used at the bedside to assess recruitment potential before the manoeuvre is applied.