Critical care : the official journal of the Critical Care Forum
-
Clinical data considering vasopressin as an equivalent option to epinephrine in cardiopulmonary resuscitation (CPR) are limited. The aim of this prehospital study was to assess whether the use of vasopressin during CPR contributes to higher end-tidal carbon dioxide and mean arterial blood pressure (MAP) levels and thus improves the survival rate and neurological outcome. ⋯ End-tidal carbon dioxide and MAP are strong prognostic factors for the outcome of out-of-hospital cardiac arrest. Resuscitated patients treated with vasopressin alone or followed by epinephrine have higher average and final end-tidal carbon dioxide values as well as a higher MAP on admission to the hospital than patients treated with epinephrine only. This combination vasopressor therapy improves restoration of spontaneous circulation, short-term survival, and neurological outcome. In the subgroup of patients with initial asystole, it improves the hospital discharge rate.
-
Comparative Study
The effect of different volumes and temperatures of saline on the bladder pressure measurement in critically ill patients.
Intra-abdominal hypertension is common in critically ill patients and is associated with increased severity of organ failure and mortality. The techniques most commonly used to estimate intra-abdominal pressure are measurements of bladder and gastric pressures. The bladder technique requires that the bladder be infused with a certain amount of saline, to ensure that there is a conductive fluid column between the bladder and the transducer. The aim of this study was to evaluate the effect of different volumes and temperatures of infused saline on bladder pressure measurements in comparison with gastric pressure. ⋯ The bladder acts as a passive structure, transmitting intra-abdominal pressure only with saline volumes between 50 ml and 100 ml. Infusion of a saline at room temperature caused a higher bladder pressure, probably because of contraction of the detrusor bladder muscle.
-
Comment
Echocardiography and assessing fluid responsiveness: acoustic quantification again into the picture?
Accurate identification of fluid responsiveness has become an important issue in critically ill patients. Pulse pressure and stroke volume variation have been shown to be reliable predictors of fluid responsiveness. ⋯ Acoustic quantification is a high-tech tool for delineating the blood-tissue interface on-screen in real time. Cannesson and coworkers utilized this technique in ventilated patients to assess stroke area changes, with the intention being to predict fluid responsiveness.
-
B-type natriuretic peptide (BNP) and amino-terminal pro-BNP (NT-proBNP) plasma levels are commonly high at the early phase of septic shock and have been suggested to be prognostic markers for this condition. It is uncertain, however, whether this increase reflects sepsis related cardiac dysfunction. ⋯ Results from repeated transthoracic echocardiographs show that NT-proBNP on day 2 after admission was higher in patients presenting with cardiac dysfunction, whereas NT-proBNP on day 1 did not predict cardiac dysfunction. These data suggest that after an initial overexpression of NT-proBNP in all septic patients, patients with cardiac dysfunction will present persistent high levels of NT-proBNP.
-
Editorial Comment
Number needed to treat = six: therapeutic hypothermia following cardiac arrest--an effective and cheap approach to save lives.
In 2005, the European Resuscitation Council (ERC) guidelines stated: Unconscious adult patients with spontaneous circulation after out-of-hospital ventricular fibrillation cardiac arrest should be cooled to 32 to 34 degrees C for 12 to 24 hours. Patients with cardiac arrest from a non-shockable rhythm, in-hospital patients and children may also benefit from hypothermia. There is no argument to wait. We have to treat the next unconscious cardiac arrest patient with hypothermia.