Critical care : the official journal of the Critical Care Forum
-
An increase in cardiac index (CI) during an end-expiratory occlusion test (EEOt) predicts fluid responsiveness in ventilated patients. However, if CI monitoring is unavailable or the echocardiographic window is difficult, using the carotid Doppler (CD) could be a feasible alternative to track CI changes. This study investigates whether changes in CD peak velocity (CDPV) and corrected flow time (cFT) during an EEOt were correlated with CI changes and if CDPV and cFT changes predicted fluid responsiveness in patients with septic shock. ⋯ In septic shock patients without arrhythmias, an increase in CDPV greater than 10.5% during a 20-s EEOt predicted fluid responsiveness with > 95% specificity. Carotid Doppler combined with EEOt may help optimize preload when invasive hemodynamic monitoring is unavailable. However, the 61% gray zone is a major limitation (retrospectively registered on Clinicaltrials.gov NCT04470856 on July 14, 2020).
-
ICU risk assessment tools, routinely used for predicting population outcomes, are not recommended for evaluating individual risk. The state of health of single patients is mostly subjectively assessed to inform relatives and presumably to decide on treatment decisions. However, little is known how subjective and objective survival estimates compare. ⋯ Subjective survival estimates are simple, cheap and similarly discriminative as objective models; however, they overestimate death risking that live-saving therapies are withheld. Therefore, subjective survival estimates of individual patients should be compared with objective tools and interpreted with caution if not agreeing. Trial registration ISRCTN ISRCTN59376582 , retrospectively registered October 31st 2013.
-
Heterogeneity is an inherent nature of ARDS. Recruitment-to-inflation ratio has been developed to identify the patients who has lung recruitablity. This technique might be useful to identify the patients that match specific interventions, such as higher positive end-expiratory pressure (PEEP) or prone position or both. We aimed to evaluate the physiological effects of PEEP and body position on lung mechanics and regional lung inflation in COVID-19-associated ARDS and to propose the optimal ventilatory strategy based on recruitment-to-inflation ratio. ⋯ Recruitment-to-inflation ratio may be useful to personalize PEEP in COVID-19-associated ARDS. Higher PEEP in prone position and lower PEEP in prone position decreased the amount of dependent silent spaces (suggesting lung collapse) without increasing the amount of non-dependent silent spaces (suggesting overinflation) in high recruiter and in low recruiter, respectively.