Critical care : the official journal of the Critical Care Forum
-
Human sepsis is an intrinsically complex disease. Populations of patients enrolled into clinical trials of novel sepsis therapies are notoriously heterogeneous with respect to the inciting cause of their disease, the co-morbid conditions that define its course, and the acute severity of their initial presentation. This heterogeneity is reflected in strikingly variable mortality risks across studies, and probably, though less clearly-established, in variable response rates to a given intervention. ⋯ On the other hand, if we view severity as a crude surrogate for a particular pathologic state, we would shift our focus to better defining those populations most likely to benefit from intervention, including patients who may not have met criteria for entry in the original PROWESS trial--those with disseminated intravascular coagulation or acute organ dysfunction from causes other than sepsis. Staging systems that stratify heterogeneous patient populations by risk and by potential to benefit from intervention have proven to be essential to the development of multimodal adjuvant treatment for cancer. They will be no less important in the optimal management of sepsis.
-
Hemodynamic monitoring is a central component of intensive care. Patterns of hemodynamic variables often suggest cardiogenic, hypovolemic, obstructive, or distributive (septic) etiologies to cardiovascular insufficiency, thus defining the specific treatments required. Monitoring increases in invasiveness, as required, as the risk for cardiovascular instability-induced morbidity increases because of the need to define more accurately the diagnosis and monitor the response to therapy. ⋯ Newer methods for assessing preload responsiveness include monitoring changes in central venous pressure during spontaneous inspiration, and variations in arterial pulse pressure, systolic pressure, and aortic flow variation in response to vena caval collapse during positive pressure ventilation or passive leg raising. Defining preload responsiveness using these functional measures, coupled to treatment protocols, can improve outcome from critical illness. Potentially, as these and newer, less invasive hemodynamic measures are validated, they could be incorporated into such protocolized care in a cost-effective manner.
-
Comparative Study
Long term effect of a medical emergency team on cardiac arrests in a teaching hospital.
It is unknown whether the reported short-term reduction in cardiac arrests associated with the introduction of the medical emergency team (MET) system can be sustained. ⋯ Introduction of a MET system into a teaching hospital was associated with a sustained and progressive reduction in cardiac arrests over a four year period. Our findings show sustainability and suggest that, for every 17 MET calls, one cardiac arrest might be prevented.